[image: header1]		

Real-Time Multimedia System Analysis: A Breeze in Linux
Author: Chetan Sethi, System Software Architect, In-Vehicle Infotainment, Sasken Technologies
Abstract – Modern infotainment processors have sophisticated hardware accelerators for high-resolution video processing, but still there are some use-cases that stretch them to the limit, requiring near real-time processing in realizing them (e.g. BD). On general purpose operating systems (GPOS), meeting these requirements can be a challenge, resulting in video artefacts like jerkiness, freeze, audio-video sync loss, and distortion. This article will take you through a brief overview of typical media processing solution, issues faced in achieving real-time audio video rendering, and tools in Linux to analyse and fix such issues while taking the BD video/graphics data-path as an example.

Keywords—Kernel Tracers, trace-cmd, Blu-ray, de-interlace, blending
Typical media processing solutions like BD, STB, disc players need to process video and graphics data and render it. Different post processing operations like de-interlacing, alpha blending, color conversion, scaling, etc. are accomplished using variety of hardware accelerators to prepare one composite signal to be rendered.
Typical video/graphics sub-system post the decoding stage consists of the following:
· Post processing of video, image
· Blending videos and graphics
· Rendering video, image, graphics

BD composite signal consists of primary video, secondary video, and graphics. For interlaced video content, de-interlacing operation is performed and then primary video, secondary video, and BD graphics signals are blended. This composite BD signal is then finally blended with user graphics before rendering onto the LCD display.
[image: C:\Users\ee208283\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\XH41DQBB\Diagram-21.jpg]
Figure 1: Typical BD Data Path
In a general software architecture design for video/graphics composite signal rendering use cases, parallel execution of independent hardware accelerators like de-interlacer, Graphics Processing Unit (2S/3D Acceleration)/Blender and display sub-system are highly desirable to achieve optimal performance and throughput. The key idea is to reduce the interdependency, define independent features/task so that the execution is done in true parallel way to feed data at real-time intervals.
[image: C:\Users\ee208283\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\XH41DQBB\Diagram-22.jpg]
Figure 2: Typical BD Software stack

At the software level, a pipeline based threading model can be used for effective usage of these accelerators by defining one execution context (thread) per hardware accelerator. These threads are responsible picking up buffer for processing, executing post processing operation using the hardware blocks and outputting the resultant buffer to next hardware module. These execution contexts can have input and output queues defined so that, output of each stage can be fed into input of another stage.
[image: C:\Users\ee208283\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\XH41DQBB\Diagram-23.jpg]
Figure 3: Pipeline based threading model
The software stack for video/graphics sub-system needs to ensure that it is capable of rendering the frames at LCD refresh rate. Issues like jerky video, audio-video sync loss, distortion, video freeze, black screen can be noticed while achieving real-time rendering. Multiple reasons like frame drops, reception of delayed frames at rendering level, multiple user-kernel transactions, scheduling issues, locking contentions, clock related issues, high interrupt/DMA loads, etc. can result in these.
Finding the root cause of above mentioned artefacts, invariably requires an insight into what the system as a whole is doing at the instant of the artefact. Logs are of limited use when the analysis has to span multiple independently-developed components, system behavior, and long duration execution.
Kernel tracing in Linux provides a light-weight, time-accurate capability to inspect system events occurring between specific points in the application execution. This information is invaluable in ascertaining the system’s impact on the performance of a specific application and identifying the bottlenecks. In Linux these can be achieved via trace-cmd, tool that initiates the trace operation and generates the log and KernelShark, a GUI front-end tool for visual inspection of the log.
To ensure, the rendering is done flawless and in real-time, it’s essential that each block in video/graphics software pipeline does its unit task in well-defined real-time boundary. To start with ensuring this, Kernel traces can be used for accurate time measurement of different hardware IPs.
[image: performance]
Figure 5: Time Measurement (Command: #trace-cmd record –e ftrace)

Kernel traces can be used for figuring out scheduling issues like higher priority thread of one particular process not allowing video rendering thread belonging to other process to schedule, leading to video breaks/jerky video issues. Such issues can be resolved by appropriately tuning the thread priorities of both the threads.
[image: Decrypt_priority_high]
Figure 6: Scheduling Issues (Command: #trace-cmd record –e sched* -o sched.dat
#kernelshark sched.dat)

Kernel tracers have distinctive capability of common logging between user space and kernel space which can be extremely useful in figuring out issues like video freeze due to locking contentions at application layer.
[image: screeenshot]
Figure 7: User/Kernel Logging (Command: #trace-cmd record –e ftrace)
Kernel tracers provide interrupt statistics that can be captured using trace-cmd. Also trace-cmd extends interface for easy adaptation of data in excel format for further analysis. As can be seen in below example, one interrupt occurs per milliseconds indicating a very high rate of unexpected interruption adding to un-necessary load on the system. This particular instance of high rate of interrupt was traced to a power management issue in one of the video post processing hardware IPs.
[image:]
Figure 8 Interrupt statistics (#trace-cmd record –e irq)
Kernel tracers assist in analyzing system calls. As can be seen in below example, one particular system call (NR 91- sysmunmap) is taking around 235 milliseconds of time for returning. Such method is extremely useful in analyzing system specific issues like tuning of DMA channel priorities.
[image:]
Figure 9 System Call statistics (#trace-cmd record –e all)
Conclusion
Kernel-shark and trace-cmd are ideal tools for analyzing performance related issues/latencies and they have quite a few advantages for performance measurement over traditional methods. Apart from performance measurement quite a few advance debugging techniques are exposed by them.
The key advantages of the trace-cmd and KernelShark tools are:
· It can be used for debugging or analyzing latencies and performance issues.
· It has minimal impact on the CPU load and is very accurate.
· It has ability to trace syscall entry and exit, and signal delivery, to a process (which can also used for debugging a process)
· Excellent user level representation tools like kernel shark.
· Dynamic control for recording/stopping traces.
· Complete thread level scheduling statistics for the entire system can be generated.
· Provide interface for plotting graphs in excel sheet.
· It gives detailed information on multiple system parameters like interrupts, kernel events etc.
Gives unified interface for logging across kernel and user space with single log file generation.

About the Author:
[bookmark: _GoBack]Chetan Sethi has rich experience in Automotive In-Vehicle Infotainment product development, Linux, Multimedia, and the Consumer Electronics space. He has technical contribution in multiple areas spanning from performance analysis of complex systems, base porting in Linux, audio DSP algorithm development to name a few. Also he has immense exposure of working with Japanese Tier-1s for entire product development cycle without compromising upon stringent quality expectations and strict deadlines. At Sasken, has the responsibility of delivering automotive In-Vehicle Infotainment sub-system for future models to a Japanese Tier-1.

About Sasken:
Sasken is a leader in providing Product Engineering and Digital Transformation services to global tier-1 customers. Sasken’s deep domain knowledge and comprehensive suite of services have helped global leaders maintain market leadership in industries such as Semiconductors, Automotive, Enterprise grade Devices, Smart Devices and Wearables, Industrials, Retail, Satcom, and Telecom.
Address: Sasken Technologies Limited, 139/25, Ring Road, Domlur, Amarjyoti Layout, Bengaluru, Karnataka – 560071, India.
© Sasken Technologies Ltd., 2017

		
6

image3.jpeg
Input
Buffer

DEI

GPU

DSS

Legend

Thead

Buffer

Output
Buffer

image4.png
SAS_OMX_VREND-2190
SAS_OMX_VREND-2190
SAS_OMX_VREND-2190
SAS_OMX_VREND-2190

SAS_OMX_VDEC-3669
SAS_OMX_VDEC-3669
vdec_1.output_6-3671
VIDEOREND-2202
VIDEOREND-2202
SAS_OMX_VREND-2190
SAS_OMX_VREND-2190
SAS_OMX_VREND-2190

SAS_OMX_VDEC-3669
SAS_OMX_VDEC-3646

VIDEOREND-2202

VIDEOREND-2202

[eee]
[ee0]
[ee0]
[ee0]
[e01]
[e01]
[ee0]
[ee0]
[ee0]
[ee0]
[ee0]
[ee0]

[600]
[600]

[600]

[000]

180.

180.

180.

180.

180.

180.

180.

180.

180.

180.

180.

180.

180.
180.

180.

180.

499237:

499268

499390:

499481:

499939:

500092:

500427

501160:

501190:

502594:

502594:

502625:

502838:
504547:

508240:

508301:

print:

print:

print:

print:

Deinterlacer|
Entry-Exit

print:

print:

print:

print:

print:

print:

print:

print

* GPU Entry-Exit

print:

print:

print:

print

€00acees

c00ace08

c00ace08

c00ace08

c00ace08

c00ace08

c00ace08

c00ace08

c00ace08

c00ace08

c00ace08

c00ace08

c00ace08
c00ace08

c00ace08

€00ac008

VPE_ENTER[©][1][2]_numofbohandles ©xa%0a43bé 6x5ec4e@ (nil) (nil) 1

vpe : Locked : Bx6546c8

vpe : Locked : Bx654788

app : Locked : 8x5ec40

VDEC_CTNStat@T handle 6xb230cde8 : MsgP I0 58 10 Put I0 1376 670 Get I0 1318 66
©x802116¢8 ©xb230cde8 208335411

V_ETB_Port_pBH-pB_L_F_PTS_CMT 1 0xSebbc@ ©x5ebc6@ 3637248 0x50000 26679544 2650
gc320 : Locked : @x527228

6C320_ENTER 3

VPE_EXIT[0][1][2] numofbohandles ©xa98a43be 6xSec4e@ (nil) (nil) 1
VGM_REC_BUFFER_ENTER i_vgmhandle_nbufzise @ ©x5f7150 @

VGM_REC_BUFFER EXIT_i_vgmhandle_bo_handle nbufzise © ©x5f7150 0xSeaf28 3637248

VIDDEC3 Process EXIT 6x862116c8 0xb236cdes 208335411
VDEC_CTNStat@T_handle 0x90966268 : MsgP_I0 71 16 Put_I0 1376 689 Get I0 1305 67

GC320_EXIT 3

gc320 : Locked : 0x526fb8

image5.png
kernelshark(trace_RR44.dat)
Pointer: 286.073943 Cursor: 0.0 Markerflj 0.0 Markerfll 0.0 A, Delta: 0.0 DECRYPT Thread Priority = Round_Rol

me Line

286.036581 286.067145

cPUO 286.072692 decrypt-2383

I
cPU1 I T T ™ L [N 1 Il

Dy P Thread | o e ——

Vrend thread s ready to process, However is not scheduled as Decrypt thread has acquired CPU O
VrendThread ’K

Page| 1 sSearch: Column: | # < || contains = [graph follows

CPU_Time Stamp Task PID_ Latency Event Info

) 0 278570251 tracecmd 4682 d.hs sched_wakeup 4682:7:7 + 4682:120:7 trace-cmd [000] Success

1 0 278570281 tracecmd 4682 d.h5 sched_stat_runtime comm=trace-cmd pid=4682 runtime=427246 [ns] vruntij
2 0 278570281 tracecmd 4682 d.h5 sched statsleep comm=kworker/0:@ pid=4 delay=33660889 [ns]

3 0 278570281 tracecmd 4682 d.h5 sched_wakeup 4682:7:7 + 4:120:7 kworker/0:0 [000] Success

4 0 278570281 tracecmd 4682 dN.3 sched statwait comm=kworker/:0 pid=4 delay=e [ns]

5 0 278570281 tracecmd 4682 sched_switch 4682:120:R ==> 4:120: kworker/0:

6 0 278570312 kworker/0:0 4 sched_stat_runtime comm=kworker/0:0 pid=4 runtime=30517 [ns] vruntime
7 0 278570312 kworker/0:0 4 sched_stat wait comm=trace-cmd pid=4682 delay=30517 [ns]

8 0 278570312 kworker/0:0 4 sched_switch 4:120:5 ==> 4682:120: trace-cmd

) 0 278570312 tracecmd 4682 sched_stat sleep comm=kworker/0:0 pid=4 delay=0 [ns]

10 0 278570343 tracecmd 4682 sched_wakeup 4682:7:7 + 4:120:7 kworker/0:0 [000] Success

1 0 278570343 tracecmd 4682 sched_stat_wait comm=kworker/0:0 pid=4 delay=0 [ns]

2 0 278570343 tracecmd 4682 sched_switch 4682:120:R ==> 4:120: kworker/0:

3 0 278570343 kworker/0:0 4 sched_stat_runtime comm=kworker/0:0 pid=4 runtime=30518 [ns] vruntime
14 0 278570343 kworker/0:0 4 sched_stat wait comm=trace-cmd pid=4682 delay=30518 [ns]

15 0 278.570343 kworker/0:0 4 sched_switch 4:120:5 ==> 4682:120: trace-cmd

image6.jpeg
[000] 122.055176 do_mIock: do_t 3
7055206 bprint: mlock_fixup: mlock fixup 329
f000] 122.055206: bprint mlock_fixup: mlock fixup 382
[000] 122.055206: bprint: do_mlock: do_mlock 435

[000] 122.055206: bprint: do_mlock_pages: do mlock pages 441
[000] 122.055206 __mlock vma pages range 171
{0001 122.055206: print: e e e g o

bprint: KemelTraces _ mlock_vma_pages_range

[000] 122.055206: bprint: mlock_vma_page: mlock_vma_page 84
[000] 122.055237

bprint mlock_vma_page 94

122.055267: print: ©00ac008
[000] 122.055298: print: UserTraces ©00ac008 direct_shm_create_or_connect 135
[000] 122.055298: print ©00ac008 direct_shm _create_or_connect 142
[000] 122.055298: print: ©00ac008 dei_open 1012
122.055328: print: ©00ac008 dei_open 1029
00ac008 dei. on entry

direct_shm_create_or_connsct

image7.png
Ti
1065.393695

e Stamp __Fun

n name
irq_handler_entry

IRQ No
irg=187

Interrupt Name
name=48468000.dei

1065.394736

irq_handler_entry

irg=187

name=48468000.dei

1065.395776

irq_handler_entry

irg=187

name=48468000.dei

1065.396817

irq_handler_entry

irg=187

name=48468000.dei

1065.397861

irq_handler_entry

irg=187

name=48468000.dei

1065.398904

irq_handler_entry

irg=187

name=48468000.dei

1065.399954

irq_handler_entry

irg=187

name=48468000.dei

1065.400998

irq_handler_entry

irg=187

name=48468000.dei

1065.402035

irq_handler_entry

irg=187

name=48468000.dei

1065.403076

irq_handler_entry

irg=187

name=48468000.dei

1065.404123

irq_handler_entry

irg=187

name=48468000.dei

image8.png
TID

imeStamp__System Call

Details

1344 | 1439.713837 | sys enter NR 91 (95603000, 1c2000, 0, 0)
1344 | 1439.713867 | irg_handler_entry

1344 | 1439.713867 | hrtimer_cancel

1344 | 1439.713867 | hrtimer_expire_entry

1344__| 1439.713867 | sched_stat_sleep

1544 | 1439.79306 | sched wakeup

1344 | 1439.79306 | hrtimer_expire_exit

1344 | 1439.79306 | irq_handler_exit irg=30 ret=handled

1344 | 1435.79892 | softirg_entry vec1 [action=TIMER]

1344 | 1439.79895 | softirg_exit vec=1 [action=TIMER]

1344 | 1439.806702 | irg_handler_entry 30 name=arch,

1544 | 1439.806732 | hrtimer_expire_entry | hrtimer=0xcl211a98

1344 | 1439.806732 | softirg_raise vec=1 [action=TIMER]

1344 | 1439.806732 | rou_utilization c078c644

1544 | 1439.949371 | kfree (drm_gem_vm_close+0x28)
1344 | 1439.949371 | kmem_cache free | (remove_vma+0xg)

1344 | 1439.989371 | sys exit NR9L

1944 | 1439.713837 | sys_enter NR 51 (95003000, 1c2000, 0, 0)

image1.jpeg
Decoded Data

FullHD FullHD

@30i Delnte @60p
Primary rlacer
Video
Secondary Alpha
Video Delnte Blending
X rlacer
Graphics
HD@60p
ARGB
User Graphics Blended Output
Full HD@20fps Full HD@60fps

Display Sub System

image2.jpeg
“— — <

DEI GPU DSS

Hardware Accelerators

image9.png
sasl?en

