
1

Shalu Agrawal, Sunil Mani, Karthik Ganesan, and Abhishek Jain 

What Smart Meters Can Tell Us

Report | February 2020

Insights on Electricity Supply and Use in 
Mathura and Bareilly Households



What Smart Meters Can Tell Us? Insights on Electricity Supply and Use in Mathura and Bareilly Households2

Image: iStock

India’s power sector is undergoing a rapid 
transformation with rising demand and
changing energy mix.



Shalu Agrawal, Sunil Mani, Karthik Ganesan,
 and Abhishek Jain 

Report
February 2020 

ceew.in

What Smart Meters Can Tell Us
Insights on Electricity Supply and Use in 

Mathura and Bareilly Households



   

Copyright © 2020  Council on Energy, Environment and Water (CEEW). 

 Open access. Some rights reserved. This study is licensed under the Creative Commons 

Attribution-Noncommercial 4.0. International (CC BY-NC 4.0) license. To view the full license, 

visit: www.creativecommons.org/licenses/ by-nc/4.0/legalcode. 

Suggested citation: Agrawal, Shalu, Sunil Mani,karthik Ganesan, and Abhishek Jain. 2020. What Smart Meters Can 

Tell Us Insights on Electricity Supply and Use in Mathura and Bareilly Households. New Delhi: 

Council on Energy, Environment and Water.

Disclaimer:  The views expressed in this report are those of the authors and do not necessarily reflect the 

views and policies of the Council on Energy, Environment and Water.  

Cover image:  Milan Jacob/CEEW. 

Peer reviewers:  A. K. Bohra, ex-MD, Jaipur Vidyut Vitran Nigam Limited ( JVVNL), Rahul Tongia, Fellow, 

Brookings India, Anil Mehta, Principal-Public Policy, Secure Meters Ltd, Neeraj Kuldeep, 

Programme Lead, CEEW, and Prateek Aggarwal, Programme Associate, CEEW.

Publication team:  Alina Sen (CEEW), Mihir Shah (CEEW), Venkatesh Krishnamoorthy, Priyanka Adhikari, and 

Friends Digital.    

Organisations: The Council on Energy, Environment and Water (ceew.in) is one of South Asia’s leading not-

for-profit policy research institutions. The Council uses data, integrated analysis, and strategic 

outreach to explain and change the use, reuse, and misuse of resources. It prides itself on 

the independence of its high-quality research, develops partnerships with public and private 

institutions and engages with the wider public. In 2020, CEEW once again featured across nine 

categories in the 2019 Global Go To Think Tank Index Report. It has also been consistently 

ranked among the world’s top climate change think tanks. Follow us on Twitter @CEEWIndia 

for the latest updates. 

 Council on Energy, Environment and Water      
Sanskrit Bhawan, A-10, Qutab Institutional Area,

 
Aruna Asaf Ali Marg, New Delhi - 110067, India

  



About CEEW

The Council on Energy, Environment and Water (CEEW) is one of South Asia’s leading not-for-profit policy research 
institutions. The Council uses data, integrated analysis, and strategic outreach to explain – and change – the 
use, reuse, and misuse of resources. The Council addresses pressing global challenges through an integrated 
and internationally focused approach. It prides itself on the independence of its high-quality research, develops 
partnerships with public and private institutions, and engages with the wider public. 

In 2020, CEEW once again featured extensively across nine categories in the 2019 Global Go To Think Tank Index 
Report, including being ranked as South Asia’s top think tank (15th globally) with an annual operating budget of 
less than USD 5 million for the seventh year in a row. CEEW has also been ranked as South Asia’s top energy and 
resource policy think tank in these rankings for the second year running. Further, it has consistently featured among 
the world’s best managed and independent think tanks. In 2016, CEEW was ranked among the world’s 20 best 
climate think tanks.
 
In over nine years of operations, The Council has engaged in over 230 research projects, published over 160 peer-
reviewed books, policy reports and papers, advised governments around the world nearly 530 times, promoted 
bilateral and multilateral initiatives between governments on 80 occasions, and organised nearly 300 seminars and 
conferences. In July 2019, the CEEW Centre for Energy Finance was launched by H.E. Mr Dharmendra Pradhan and 
H.E. Dr Fatih Birol.
 
The Council’s major completed projects and contributions include the 584-page National Water Resources 
Framework Study for India’s 12th Five Year Plan; the first independent evaluation of the National Solar Mission; 
India’s first report on global governance, submitted to the National Security Adviser; irrigation reform for Bihar; the 
birth of the Clean Energy Access Network; policy briefs submitted to the PMO on accelerated targets for renewables, 
power sector reforms, environmental clearances, Swachh Bharat; pathbreaking work for the Paris Agreement, the 
HFC deal, the aviation emissions agreement, and international climate technology cooperation; developing 
the strategy for and supporting activities related to the International Solar Alliance (ISA); designing the Common 
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Power utilities in India face the daunting task of 
meeting the rising electricity demand by offering 
reliable electricity services.
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Power utilities or discoms in India face the daunting task of meeting the rising electricity 
demand by offering reliable electricity services, at the same time, engaging in efforts to 

recover the costs of operation and continually allocating resources to invest in upgrading the 
power infrastructure. The continually surging residential demand, which makes up one-
fourth of the country’s power consumption, adds up to the challenges of discoms. However, 
discoms lack an adequate understanding of electricity usage patterns at the household 
level and its variation with time and season. The limited information about electricity use 
from conventional meters at a low frequency (once a month) does not render it suitable for 
demand analysis. 

India is an attractive smart-meter market in the world, which remains largely untapped,
boasting of 215 million domestic connections nationwide. Nearly 2 million smart meters have
been installed across the country so far. The adoption of smart meter technology in India
provides an opportunity for the power distribution companies (discoms) to gather real-time
information on residential electricity demand and make better decisions to manage it.

We provide insights into the household consumption pattern by collecting high-frequency 
data from 93 smart meters that we installed in urban households in Mathura and Bareilly 
districts of Uttar Pradesh. We also investigate the gaps in the quality of supply and discuss 
how power distribution companies can utilise the smart meter data for effective service 
delivery and demand management. Households were sampled in a purposive manner from 
multiple residential areas and within a substation jurisdiction to capture diversity in the 
quality and duration of supply and consumption behaviour. We started collecting smart-
meter data from May 2019. This study presents preliminary insights based on the data 
collected between May-October, 2019. 

Executive summary

Smart meters 
provide an
opportunity for the
power distribution
companies to
gather real-time
information
on residential
electricity demand
and make better
decisions to
manage it
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Findings on the quality of electricity supply

 ● Urban households in the residential areas that we covered in the study received     
  electricity supply for 22 hours on average. However, there was a variation in the   
  duration and quality of electricity supply across urban areas.

 ● Households in the notified town areas (NTAs) receive poorer supply as compared   
  to those residing in the district headquarters (Figure ES 1). While households in NTAs  
  endured power outages of around 3.5 hours a day, with an average of 6 interruptions 
  per day, households in district headquarters witnessed shorter (1.3 hours a day) and  
      fewer interruptions (3.5 times a day). Discoms need to focus more on the supply   
      situation in NTAs.

 ● Interviews with field-officials indicate that most outages can be attributed to two   
  factors: tripping/faults and unscheduled load-shedding/shutdowns due to repair   
  work or infrastructure upgrades. NTAs in Bareilly also experienced power cuts due to  
  scheduled load-shedding.

 ● Besides the duration of supply, it is also important to consider the quality of supply.  
  Variation in voltage is a major concern.  A few residential areas suffered from low   
  voltage issues, mainly due to inadequate capacity, with voltages dropping by 25–30   
  percent during the peak load.

 ● Outages recorded at the household level differ significantly from the outage duration  
  reported by the discoms at the feeder-level (11 kV), underscoring the need to monitor  
  supply quality at the end-user level.

ES 1: Households in NTAs face more power outages than those in district headquarters

Most residential 
areas received 
electricity supply 
with higher than 
prescribed voltage 
levels for a 
significant fraction 
of time  

Source: Authors’ analysis
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Findings on electricity use in households

 ● Between May and October 2019, the sampled households consumed 280 units of   
  electricity per month, on average. While households using only fans for space cooling 
  spend up to 200 units per month between May and October, those with coolers and   
  air conditioners guzzled more power, in the range of 200–1000 units a month.

 ● Customer segmentation using k-means clustering suggests that households having air  
  conditioners and/or coolers comprise high and very-high demand clusters, and are the  
  key contributors to peak demand (Figure ES 2).

 ● The economic status of the household, measured by reported monthly expenses, is a key  
  predictor of the ownership of advanced cooling appliances. Residential electricity use, as  
  well as peak demand, tends to rise with an increase in household income levels.

 ● An analysis of the usage pattern of air conditioners, with the help of the current   
  signature, reveals that sample households switched on the air conditioner for an average  
  of 5.5 hours a day. The household’s economic status dictates the use of air conditioners,  
  as evident by the moderate use of the appliance in many households. 

 ● There is a significant difference in the appliance usage perceived by the households  
  and the actual observed usage gathered from the smart meter data. Most households  
  tend to over-estimate or under-estimate their AC usage, suggesting that people have  
  limited information to optimise their energy usage.

ES2: Households can be classified into four clusters based on demand, from low to very 
high levels of consumption

Executive summary

Source: Authors’ analysis

Most households 
tend to over-
estimate or under-
estimate their AC 
usage, suggesting 
that people have 
limited information 
to optimise their 
energy usage 
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Key recommendations for discoms to utilise smart meter data

Improving billing efficiency and reducing commercial losses seem to be the primary objective 
of discoms for deploying smart meters in India. We argue that discoms can go further in 
utilising the smart metering infrastructure to provide reliable, cost-effective, and sustainable 
electricity services to the consumers. Based on our insights on the electricity supply situation 
and demand patterns, we propose three key recommendations.

•  Monitor network health and ensure quality power supply

  Any problem in the distribution network affects its overall health, which can result in  
  the end consumers receiving low supply hours compared to the supply at the feeder  
     level. In order to achieve the policy target of uninterrupted power supply, discoms   
     can effectively make use of the smart meter infrastructure to monitor tail-end supply  
     parameters, such as power outages, voltage profile, and power factor, and ensure better  
     network health through predictive maintenance and infrastructure upgrades.

•  Track electricity demand and identify customers driving the peak demand

  Smart meter data proves useful to gain a clear understanding of the household load  
     profile, peak demand, and its drivers, which can be used by discoms to profile different  
        customer segments. This data, in turn, could be used to forecast demand, assess the  
        capacity of the distribution network to handle the load at all times, and further plan  
        for infrastructure expansion. Discoms could also explore alternative strategies to       
        augment supply, such as peaking power, demand shifting, and distributed storage.

•  Engage with consumers for demand-side management

  Apart from making supply-side interventions within their span of control as the   
     electricity service provider. We propose three potential avenues: 

a. Providing periodic feedback to consumers on self-consumption and that of others  
 to promote conservative energy use. We find that most people tend to estimate their  
 energy consumption wrongly and have inadequate information to optimise their  
 usage or purchase decisions. Discoms, by providing feedback on energy usage in  
 general,  and AC use, in particular, could help households keep a better check   
 on their overall energy consumption, which would also increase consumers’ trust  
 in the electricity bills. Discoms could consider indicating the hours of AC use in the  
 electricity bill.

b. Implementing demand response mechanisms in a targeted manner. The increase   
 in the use of air conditioners and coolers by households would make load   
  management further challenging for discoms. Discoms should design    
 and test new mechanisms, such as time of use (ToU) pricing targeted towards   
        residential consumers who contribute to peak demand. By resorting to this      
       measure, discoms would be able to achieve load shifting/reduction and also           
 manage their procurement costs associated with rising peak demand. Discoms could   
 also incentivise peak consumers to adopt distributed generation and/or storage to  
 reduce withdrawals from the grid during peak hours and achieve load shaving.

Discoms should 
find ways 
to engage 
directly with 
the residential 
consumers for 
managing demand 
and also push 
them towards 
exhibiting  
efficient    
consumption 
behaviour 
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India’s power sector is undergoing a rapid transformation, as we are witnessing changes in 
power generation, regulatory measures, as well as consumption patterns. This environment 
provides an opportunity for discoms to transform from being just an electricity supplier to 
an energy service provider by engaging with the consumers to help them save electricity and 
improving the overall consumer experience. 

Smart metering initiatives in the country are well-timed to enable this transition. However, 
the smart-meter deployment should be carried out in realistic timelines taking into account 
technology advancements and various implementation challenges. A systematic approach 
and treating smart-meters as an integral part of grid-modernisation efforts would be crucial 
to tap into the multiple opportunities that the technology offers. 

Executive summary



What Smart Meters Can Tell Us? Insights on Electricity Supply and Use in Mathura and Bareilly Households22

With increased electrification, more people are 
using electric appliances. A study participant in 
Bareilly watching TV.

Image: Milan Jacob/CEEW
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Following the implementation of the Saubhagya scheme, nearly all Indian households 
are electrified. The government’s next policy target is to provide a 24x7 power supply 

to all the consumers. Despite some improvements in the duration of power supply, the 
uninterrupted supply remains an uphill task on account of multiple factors. A limited 
understanding of electricity consumption pattern in the residential sector, mainly due to the 
paucity of relevant data (Chunekar, Varshney, and Dixit 2016), is a key barrier. To manage 
the loads, utilities in the past have resorted to load-shedding (blackouts or brownouts) 
or procured expensive power. Utilities now are tasked with a policy-driven imperative of 
providing uninterrupted power, in addition to improving their financial health. To achieve 
both, a better understanding of demand would be crucial for effective load management. 

Residential consumption, which now makes up one-fourth of the country's total electrici-
ty use, is projected to increase significantly over the next decade (Khosla 2018). Improved 
supply, higher electrification rates, use of more appliances, and lifestyle changes have all 
contributed to the rising demand, which is likely to increase exponentially in future. The fol-
lowing questions arise for an understanding of residential consumption patterns: How does 
the household electricity use vary on an hourly, daily, and seasonal basis? Which appliances 
contribute the most to electricity use in houses, and to what extent? Which appliances and 
consumers would drive the changing demand pattern going forward?

Answers to these questions can help in effective planning of electricity supply systems and 
designing interventions to manage the rising demand. The information about consumption 
that is currently retrieved from conventional meters and the frequency of data collection is 
not sufficient for getting a clear picture of the variations in household consumption. Smart 
meters, which have been deployed by several utilities, enable continuous two-way communi-
cation between the utility and the consumer, facilitating the acquisition of consumption data 
at a higher frequency in real-time.

We look at the following questions to suggest effective ways to utilities so that they provide a 
reliable supply and manage the load efficiently:
 1.     What can the smart meter data tell us about electricity supply and its use in households?
 2.     How can the smart meter data be used for managing household electricity demand?

1. Motivation for the study

To achieve 24x7 
power supply 
and improve their 
financial health, a 
better understanding 
of electiricy demand 
would be crucial 
for discoms to 
manage loads 
effectively  

1. Motivation for the study
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We do so with the help of supply and consumption data of 93 urban households from two 
districts in Uttar Pradesh. The data was collected with the help of smart meters that we 
installed at the selected households as submeters, between May and August 2019. We begin 
by discussing the developments in smart metering technology and how Indian power utilities 
are tapping into the opportunities offered by this technology in Chapter 2. We explain our 
study design in Chapter 3. In Chapters 4 and 5, we provide insights on the quality of supply 
and household consumption patterns. In the concluding Chapter 6, we discuss the policy im-
plications of our insights and key recommendations. The report presents preliminary findings 
based on the smart meter data collected between May and October 2019.
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In this chapter, we briefly introduce the concept of advanced metering infrastructure (AMI) 
and the opportunities that smart meters present to the power utilities. We also provide a 

snapshot of trends in the smart meter market and policy drivers across various countries. 
Finally, we delve on the developments in India so far and the key issues that need policy 
attention.

2. Mapping the smart metering landscape

Electricians installing a smart meter at the main 
supply of a household in Mathura.

Image:Shalu Agrawal/CEEW
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2.1 AMI and smart meters
AMI is an integrated system of smart meters, communication networks, and data manage-
ment systems, which facilitates two-way communication between the utilities and con-
sumers. Smart meters form the core of an AMI. They measure energy flow like conventional 
electronic meters. The ‘smart’ component arises from their ability to collect and transmit the 
consumption and supply-related data at specified time intervals, on a real-time basis. The 
data can be communicated through various channels and is stored in a centralised server, 
from where it can be extracted and analysed to generate useful insights.

The AMI aids in the seamless operation of power utilities by facilitating higher billing effi-
ciency through remote and accurate bill generation, enabling better network health through 
real-time monitoring of critical parameters, and improving service delivery through outage 
management system (CEA 2016). Utilities can also use the high-frequency consumption data 
for demand forecasting, predictive modelling, and to study peak demand patterns, which can 
assist them in infrastructure planning and cost-effective power procurements.

Smart meters form the basis of a smarter grid, which in turn offers a significantly high level of 
control and responsiveness to varying grid conditions. A smart grid would also enable higher 
penetration of distributed energy in the grid than would otherwise be possible. Even the 
customers could rely on smart meters for monitoring and managing their electricity demand 
and expenses. In short, besides facilitating efficiency in the meter-to-cash cycle, AMI offers 
multiple avenues for utilities for improved operations, planning, and facilitating the clean 
energy transition (Wood Mackenzie 2019).

2.2 Global trends and drivers
Globally, many countries have embraced the AMI technology for upgrading their utility infra-
structure for electricity, gas, and water supplies. The global smart meters market is growing 
rapidly and is expected to double from USD 665 million in 2017 to USD 1.2 billion by 2024 
(Wood Mackenzie 2019). Until recently, countries in Western Europe, the United States, and 
China accounted for the majority of smart meter installations (Research and Markets 2019). 
A few countries, including China, Japan, Spain, and France, are close to full deployment of 
smart meters. Going forward, emerging economies in Asia-Pacific are expected to lead the 
market growth of smart meters.

Across countries, the transition to smart meters is mainly driven by government policies, 
even though the policy motivations differ. In EU, the smart meter push is driven by the ‘20–
20–20’ objective, which aims to achieve 20 per cent of total EU’s energy consumption from 
renewable energy sources (RES), 20 per cent increase in energy efficiency, and 20 per cent 
reduction in greenhouse gas (GHG) emissions compared with the 1990 levels by the year 2020 
(Exl Utilities Academy 2016). Initiatives in the United States and Japan are primarily focused 
on creating a responsive and robust smart grid capable of moderating critical system failures. 
In the United Kingdom, the roll-outs aim to enable customers to use energy efficiently and 
save on the bills. Italy, on the other hand, has rolled out smart meters to detect and prevent 
electricity theft, a critical issue ailing its power sector (Álvarez, Ghanbari, and Markend-

A smart grid would 
enable higher
penetration of 
distributed energy 
in the grid than 
would otherwise 
be possible 
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ahl 2014). In China, the provision of reliable and cheap electricity to support the country’s 
economic growth has been the primary driver (Banga 2019). In short, AMI implementation 
across countries is driven by diverse objectives, ranging from loss reduction and creation of a 
responsive smart grid to supporting the clean energy transition through energy efficiency at 
the end-user level and higher penetration of renewable resources in the energy mix.

2.3 The smart meter discourse in India
Taking hints from the global developments, India has also joined the ranks of fast-growing 
smart meter markets. Several smart grid pilot projects have been implemented across India, 
through which more than 140,000 smart meters have been installed (see NSGM (2019) for 
details). However, the aggressive policy push for smart meters came only recently.

In 2015, the Ujwal Discom Assurance Yojana (UDAY) scheme, aimed at financial turnaround 
of ailing distribution companies (discoms) in India, mandated a complete switch to smart 
meters for all households consuming more than 500 kWh per month by December 2017 and 
those consuming higher than 200 kWh per month by December 2019 (Ministry of Power 
2018a). This directive was later changed to follow a feeder-wise deployment, instead of a cus-
tomer-wise deployment, to ensure that the last-mile communication network can be estab-
lished and maintained in a cost-effective manner (ISGF 2017). Under the UDAY scheme, ~1.4 
million smart meters have been deployed so far, as per UDAY dashboard. The government 
also announced a separate plan for installing 4.1 million smart meters in urban areas, as part 
of the ongoing Integrated Power Development Scheme. However, the progress under these 
schemes has been extremely slow, primarily due to high investment costs (Powerline 2019).

In 2017, Energy Efficiency Services Ltd. (EESL), a five-way joint venture of public sector cor-
porations under the Ministry of Power, entered the AMI landscape to bring down the smart 
meter costs through demand aggregation and bulk procurement (The Hindu Business Line 
2019). In July 2017, EESL floated its first mega tender for 5 million smart meters on behalf of 
the states of Haryana and Uttar Pradesh. As of October 2019, EESL has succeeded in deploy-
ing 0.625 million smart meters in India. EESL financing the smart meter deployment through 
a deemed savings model, wherein the company makes the entire upfront investment and 
manages the infrastructure for the next eight years. It plans to recover its investment from 
deemed savings accruing to the discoms on account of their enhanced billing accuracy, elimi-
nation of meter-reading costs, and other efficiencies through the installation of smart meters.

In early 2019, the Union Minister of Power announced the government’s plan to convert all 
the domestic meters into smart pre-paid meters by 2022. EESL is the nodal agency to imple-
ment the Smart Meter National Programme, aimed at the universal roll-out of smart meters. 
The primary objective of the government for switching to smart meters through policy 
intervention is the financial turnaround of ailing discoms in the country by reducing their 
technical and commercial losses (Ministry of Power 2019). Replacing conventional meters 
with smart meters would minimise human intervention in the process of metering, billing, 
and collection (MBC), enable remote billing and provide a remote control for connection and 
disconnection to discoms. The remote control of discom operations is expected to reduce 
their losses that usually happen through electricity theft, non-payments, defective meters, 

In 2019, India's 
Union Minister of 
Power announced 
the government’s 
plan to convert 
all the domestic 
meters into smart 
pre-paid meters by 
2022. Two million 
smart meters have 
been deployed so 
far

Mapping the smart metering landscape
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and erroneous bills due to collusion between consumers and meter readers/billing agents 
(Ganesan, Bharadwaj, and Balani 2019). Along with the metering of feeders and distribution 
transformers, smart meters would also assist the discoms in carrying out robust energy audits 
and plug the leakages through appropriate diagnosis.

2.4 Need for a holistic approach
India has 215 million domestic connections nationwide (Ministry of Power 2018b), making it 
the largest untapped smart meter market in the world. It is, therefore, relevant to look at the 
deployment of smart meters not as a mere use of a sophisticated product but as a comprehen-
sive solution for achieving the government’s goal of 24×7 power for all Indians (Banga, 2019). 
So far, 800,000 smart meters have been deployed in the country, but a rethink on the policy 
drivers, deployment strategy, and implementation timelines is still necessary, drawing from 
the experiences of smart meter roll-out in India and elsewhere.

Reviewing the policy vision driving the smart metering initiatives

Smart meters are capable of achieving much more than improving the  financial health of 
discoms by cutting their losses and increasing their billing efficiency. They form an integral 
part of AMI and grid modernisation efforts. The smart meters provide critical data that can 
help discoms assess the gaps in power supply due to local faults, poor voltage profile, and 
capacity inadequacy, so that they can modify their distribution network to work more effi-
ciently. The high-frequency consumption data (collected at a 15-minute interval as compared 
to once a month) is more granular and can be effectively used to assess demand patterns, 
forecast future demand, and develop new tariff plans. In short, smart metering infrastructure 
can transform the way the discoms procure power and plan infrastructure management and 
expansion. Borrowing from the EU’s ‘20-20-20’ objectives, utilities in India must also leverage 
AMI to enable the low-carbon transition in India, through higher penetration of distributed 
solar systems and engaging customers to make energy-efficient choices and lower their con-
sumption.

 Setting realistic timelines given the system building requirements

A systematic approach to smart-meter roll-out would be crucial to tap into the multiple 
opportunities that the technology offers. The current government policy target of achieving 
universal roll out within a short timeframe of three to five years, appears to ignore the various 
implementation challenges that are likely to be encountered during smart meter deployment 
in India as well as time taken by other countries. Implementation of AMI in the United States 
and Europe began in 2009 and is projected to reach 82 and 74 per cent, respectively, by 2024. 
Germany, Brazil, Mexico, and other countries have just begun to roll out smart meters.

AMI implementation is an intricate exercise, which requires systems building, integration 
of multiple interfaces, and organisation-wide capacity building. Moreover, the smart meter 
technology landscape is changing fast with the advent of second-generation smart meters 
and the planned phase-out of the 3G communication network. Pursuing full deployment 
within a very short timeframe may push the discoms into the trap of technology lock-in, with 

1. Conversion rate used: 1 USD = INR 70.
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significant financial implications. It is, therefore, essential that smart meter deployment is 
carried out in realistic timelines taking into account technology advancements and revising 
the strategy in line with implementation challenges.

 Vetting deployment plans with robust cost-benefit-analysis

A comprehensive cost-benefit analysis (CBA) should guide the decision concerning the utility 
of smart meter roll-out. Installation of smart meters entails a high upfront cost, because of 
which only a few utilities in India have adopted the capital investment route for AMI roll-out. 
Most others have contracted EESL, which is deploying smart meters under the leasing model. 
Under this model, EESL charges the discoms a fee of ~INR 86 per month per customer (UP-
ERC 2018). When extrapolated to the total domestic customer base (215 million households), 
these costs imply that discoms would have to incur a recurring annual expenditure of USD 
3.17 billion (INR 22,190 crore). Even if the costs were to further reduce due to economies of 
scale, it seems unclear whether Indian utilities have a robust CBA-based rationale for deploy-
ing smart meters at scale. Current decisions appear to be based on deemed savings estimates, 
even though EESL has no liability in case the energy savings are not commensurate with its 
expectations. Thus, there are concerns about the financial sustainability of smart meter roll 
out, as many discoms in India are struggling to meet their financial and loss reduction targets 
set under the UDAY scheme, with their losses mounting to USD 4 billion (INR 28,369 crore) as 
reported during the fiscal year 2019 (Chatterjee 2019). To deploy smart meters at scale, under 
a savings-linked model, it will be crucial to create a detailed, high-accuracy baseline through 
independent third parties and spell out a governance mechanism to resolve conflicts (USAID, 
2018)are struggling to meet their financial and loss reduction targets set under the UDAY 
scheme, with their losses mounting to USD 4 billion (INR 28,369 crore) as reported during 
the fiscal year 2019 (Chatterjee 2019). To deploy smart meters at scale, under a savings-linked 
model, it will be crucial to create a detailed, high-accuracy baseline through independent 
third parties and spell out a governance mechanism to resolve conflicts (USAID, 2018)

Mapping the smart metering landscape
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Sunil Mani (extreme right) and Shalu Agrawal 
discussing the smart meter pilot with DVVNL 
officials in Mathura. Shalu Agrawal (below) 
meeting household respondents during the 
survey.

Images: CEEW
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A high-frequency data provides finer details of the household’s electricity consumption 
patterns and its variation with time and season. As such, consumption data is not 

easily available; we installed single-phase smart meters in 93 urban households in Mathura 
and Bareilly districts in the state of Uttar Pradesh (UP). We explain the sampling strategy, 
meter installation, and data collection process in this chapter. We conclude the chapter with 
insights and experiences we gathered from the field.

3.1 Sampling strategy
Our objective was to capture the maximum variation in household consumption. We de-
signed a suitable sampling strategy with an initial sample size of 100 households, which is 
large enough to capture variations across the households and yet small enough to manage 
the field-related challenges.

Geographic distribution of the sample

We chose two districts—Mathura and Bareilly—in a purposive manner. These districts have 
tier 2 or tier 3 towns, which are likely to experience rapid growth in demand for power in the 
near future. Further, the urban areas in these districts receive power supply for at least 20 
hours, as per anecdotal evidence. It is essential for capturing household consumption well, 
as long hours of power cut would have limited the understanding of actual (uncurtailed) de-
mand. Finally, the research team has some amount of familiarity with the local community, 
which was crucial for managing exigencies during meter installation and data collection.

In most districts in India, the district headquarters is invariably the largest urban area, which 
is administered by a municipal council or a municipal corporation, while the smaller urban 
areas are classified as notified town areas (NTAs). Families living in district headquarters are 
likely to be more urbanised compared to those living in the NTAs. For this study, we sampled 
households in residential areas from both the district headquarters and a few NTAs. We also 
sampled households from residential areas receiving power supply from different substa-
tions, in order to capture the variation in supply. Table 1 provides details about the geograph-
ic distribution of the sample.

3. Research design

We sampled 
households 
in residential 
areas from both 
the district 
headquarters and 
a few notified 
town areas
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Table 1  
Geographic 
distribution of the 
households covered 
in this study

Source: Authors’ analysis  

Criteria for household selection

We sampled households in a purposive manner based on the two key criteria: number 
of rooms and appliance inventory. Past studies confirm that these variables are strongly 
associated with the household’s electricity demand and its consumption pattern (Filippini 
and Pachauri 2004; Singh, Mantha, and Phalle 2018). Further, these can be used as a proxy 
for understanding the household’s socio-economic status. During the fieldwork, we made 
attempts to sample households with different combinations of the number of rooms and 
appliance inventory in both the districts.

However, we sampled households having a single-phase electricity connection only, which 
account for the majority of the residential consumers. Households with three-phase connec-
tions are not considered in this study. We also excluded households that did not meet any of 
the following criteria:

 •     Living in the house for at least one year and having no plans to move out over the next       
        one year.
 •     Carrying out no significant commercial activity from within the residential premises.
 •     Receiving electricity bills on a regular basis.
 •     Having no plans for construction or renovation activities over the next one year.

Residential Area Household sample

Muncipal 
Corporation

(District 
headquarter)

5

1

5

3

4

5

6

4

8

8

3

4

3

3

3

5

1

1

3

4

8

6

Vidhauliya

Weston Colony

Civil lines -1

Civil lines -2

Jankipuram

Kila katghar

Sun city

Vihar Kalan

Faridpur

Nawabganj

Jaisinghpura

Chaitanya Lok

Balajeepuram

Krishna nagar

Chamunda Colony

Govind Vihar

Kotwali

Mohalla Adat - Sadar

Vardpura - Sadar

Farah

Goverdhan

Sonkh

CB Ganj

Civil lines

Jankipuram

Kila Katghar

Mahanagar

Faridpur

Nawabganj

Birla Mandir

Jai Gurudev

Krishna Nagar

Masani

Mathura Cantt

Farah

Goverdhan

Sonkh

SubstationDistrict

Bareilly

Types of urban area

Muncipal 
Corporation

(District 
headquarter)Mathura

Notified Town 
Area

Notified Town 
Area
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Based on our sampling strategy, we could gain a nuanced understanding of the supply qual-
ity in different types of urban areas and consumption pattern and choices of urban house-
holds in the focus districts. However, due to small sample size and exclusion of households 
with three-phase connections, the insights cannot be generalised to the entire urban popula-
tion in the focus districts.

3.2 Sample characteristics
With the help of in-person surveys, we captured the socio-economic characteristics and 
appliance ownership pattern of the sampled households. Our sampling strategy ensured that 
the sampled households are quite diverse in terms of demographic and economic character-
istics. See Annexure 1 for details on the demographics. Here we discuss the economic profile 
and appliance ownership pattern of households studied.

Economic characteristics

The combined income of a majority of the sampled households (60 per cent) was less than 
INR 20,000 per month (Figure 1). The share of households having a larger income is higher in 
Mathura when compared to Bareilly. So, we infer that households in the Mathura sample are 
socio-economically better than those in the Bareilly sample. However, in terms of monthly 
household expenditure, the two samples are quite comparable, with median values of INR 
10,000 and INR 10,500 in Bareilly and Mathura, respectively.

Figure 1: Sample households in the Mathura district are economically better off than those 
in Bareilly district

Research design

Source: Authors’ analysis
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Appliance ownership

All the sampled households have grid electricity connections as per the study requirement. 
All the households have lights and fans, but the ownership of medium to high-power appli-
ances is not uniform. More than three-fourths of the sampled households have a television 
and a refrigerator, but coolers and air conditioners (ACs) are present in 45 and 37 per cent 
of the households, respectively. Around 16 per cent households have both coolers and ACs. 
Ownership of water pumps, mixers, and washing machines is also quite high. But very few 
households have in their possession other high-power appliances, such as geysers, room 
heaters, induction cook stoves, or ovens.

Figure 3 compares the penetration of different appliances among the households sampled 
from the two districts. Though the use of appliances such as the refrigerator and water pumps 
is quite similar, there are differences in ownership of other moderate and high-power appli-
ances.

The samples are also diverse in terms of the primary source of income of the household 
(Figure 2). One-fourth of the households rely on salaried jobs (government/private) for their 
monthly income, while another fourth derive income from running a petty business (such as 
retail shops) or one or more members of the household are self-employed. Further, a member 
of the household in one-fifth of the sample has an established private business. In anoth-
er one-fifth of the sampled households, one or more members engage in labour activities, 
implying an uncertain source of income for the household. These trends may have significant 
implications on consumption trends noticed across households sampled from these two 
towns.

Figure 2: Sample households have diverse sources of income

Source: Authors’ analysis
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Figure 3: Appliance penetration among the sample households varies across the two districts

Source: Authors’ analysis

3.3 Meter installation and data acquisition
We procured single-phase smart meters manufactured by Sumeru Verde Private Limited. The 
meters were programmed to capture consumption and supply variables at every 3-minute 
interval, so a total of 480 measurements were recorded for each day. Annexure 2 illustrates 
the parameters that were captured from a sample household. The data is communicated over 
cellular network (Vodafone GPRS network).

We hired and trained two resource persons with the help of a market research company. They 
were responsible for getting consent from the household, installing the smart meter with 
the help of electricians, and resolving any issues related to data communication or customer 
engagement. The first smart meter in our sample household was installed on 23 April 2019 
and the last on 6 September 2019. Our initial target was to install 100 meters, but we had to 
remove a few due to several reasons discussed in the next section. As of 1 November 2018, we 
had 93 smart meters installed and communicating. Smart meters were installed at the mains 
supply to the household similar to submeters. The households did not bear any financial lia-
bility or derive any utility from the installation. We recorded aggregate consumption parame-
ters only and did not monitor usage pattern at the appliance level.

We also conducted a 20-minute structured survey with the sampled households to capture 
information related to households’ socio-economic background, electric appliances in use, 
their key characteristics (age, capacity, BEE star rating), and perceived usage patterns. Chap-
ter 4 provides details on the profile of the samples.
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2. Our meters can store data for up to 3 days, after which the new data overwrites the old data. For instance, if  
 there was no communication for four consecutive days, day 1 data gets overwritten by day 4 data.

3.4 Implementation challenges and gaps in data
High-frequency consumption data can be collected from smart meters using which useful 
insights can be gathered for various purposes. However, management of such a high-end 
technology itself can pose multiple challenges. Here, we briefly discuss three key challenges 
encountered during meter installation and data acquisition.

Getting the consent from the household for installing smart meters on their mains supply 
was the first challenge. We initially adopted a snowball sampling technique to identify 
households willing to participate in this study. However, we soon found out the limitations 
of this approach, as majority of the households were unwilling to let a non-governmental 
entity install a monitoring device in their house, particularly one that may interfere with their 
electricity connection. So, we sought help from the district-level officials of the electricity de-
partment, who helped us by sending the local linemen with our field team to obtain consent 
from the household. Even though the linemen enjoy consumer trust in matters concerning 
electricity, we faced the issue of high non-response. Many households refused to participate 
and cited reasons such as risk of increased bills, no personal benefit, or simply ‘not in my 
backyard’.

Our team still managed to get adequate consents, after which the challenge of retaining 
their participation emerged. A few households in Mathura requested us to remove the smart 
meters, stating, without evidence, that the smart meters led to higher bills. These fears were 
partly fuelled by related rumours spread on social media. The timing of our installations, i.e., 
onset of summer, was the main factor behind such concerns, as it coincided with a spurt in 
the household electricity use. We managed to assuage participants’ concerns in most places, 
but we had to remove meters from three locations.

Finally, ensuring a seamless communication between smart meters and the server was the 
third and most difficult challenge. We had to periodically monitor whether meters were trans-
mitting all the data packets. In many instances, we found large packets of data missing due to 
low network strength. To overcome this issue, provisions were made to retrieve data multiple 
times a day. In some cases, we replaced the SIM cards and used the SIM cards of a different 
service provider. We also lost a few days of data from many meters, as the data consumption 
was higher than that was expected and the SIM cards stopped working once the data pack 
was exhausted. It took us 7–15 days to replace those SIM cards, due to which data for many 
days was completely lost. Some amount of data was lost due to gaps in programming, such 
as swapping of data across multiple columns. Finally, in a few cases, our meters stopped 
communicating due to issues in communication module or hardware damage due to power 
surge. Whenever such problems were diagnosed, the smart meter was repaired or replaced. 
Due to reasons cited above, we lost ~15 per cent of data on average, over a period of around 6 
months. Figure 4 shows that some amount of data is missing from the almost all the meters, 
ranging from 3 to 33 per cent.

Many households 
declined to 
participate in the 
study for fear 
of inflated bills, 
partly fueled by 
rumours on social 
media

We lost ~15% data 
due to network 
issues, software 
bugs, data pack 
shortage, and even 
hardware damage
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Figure 4: Across 93 smart meters, 3–33 per cent of data is missing

Research design

Our experience clearly shows that diverse factors that may hinder seamless data acquisition 
from smart meters, which in turn may adversely affect discoms’ ability to bill for electricity 
use in an accurate manner. We received a few complaints of inflated bills from households in 
Mathura whose conventional meters have been replaced by smart meters, potentially due to 
software-related errors. Inflated or inaccurate billing may result in consumer distrust in the 
smart meter technology, especially because several rumours were spread on social media to 
this effect.

It is, therefore, imperative that discoms actively monitor the quality of data collected from the 
smart meters and cross-check to verify if the consumption recorded at the consumer end cor-
relates with that measured at the distribution transformer (DT) and the feeder level. Putting 
out relevant statistics in the public domain would inspire confidence among consumers and 
facilitate rigorous assessment of the benefits and implications of smart metering initiative in 
general. Outreach and awareness programmes should also be undertaken to erase the trust 
deficit between discoms and customer, which prevails at present.

3.5 Data reliability
The credibility of any data-based study depends on the reliability of the data record itself. 
We compared the household consumption recorded by some of our smart meters (18 meters 
installed in Mathura) with that of the discom meters with the help of manual inspections. For 
each household, we recorded the cumulative consumption from both discom and our meters 
on the same date. The first and second readings were observed at an interval of 30–45 days. 
For 18 out of 34 meters installed in Mathura, which were monitored for 30–45 days, consump-
tion as per the smart meter reading was within ±7 per cent error range of the discom meter 
reading. On average, our smart meters under-recorded data by 1 per cent, indicating fairly 
accurate readings. See Annexure 3 for further details.

Discoms need 
to undertake 
awareness 
programmes to 
enhance consumer 
trust in smart 
meter technology

Source: Authors’ analysis



What Smart Meters Can Tell Us? Insights on Electricity Supply and Use in Mathura and Bareilly Households382022

Urban households in Mathura and Bareilly districts 
face multiple electricity outages as a result of 
faults associated with storms or monkey troubles.

Image: IStock
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In this chapter, our discussion focuses on the duration and quality of power supply received 
by the households in our study, with the objective of understanding the role that smart 

meters can play in assisting the discoms to provide better services. All our analysis in this 
study is based on the data collected between May and October 2019.

4.1 Supply duration
Between May and October 2019, the sample households in which smart meters were installed 
received 22 hours of power supply on average, which means an average power outage of 2 
hours per day. The average duration of outages ranges from 30 minutes to 5 hours across 
households, indicating that all urban households within a district show variations in the 
duration of supply. So, we analysed the outages faced by households in different residential 
areas.

Figure 5 shows that households in Faridpur and Nawabganj in Bareilly district and Farah, 
Goverdhan, and Sonkh in Mathura district suffered from long hours of power cuts (3.5 hours/
day) as compared to the rest of the households in the district headquarters (1.3 hours/day). 
Besides longer outages, households in NTAs also faced more frequent outages (6 times a day 
on average) as compared to households in district headquarters (3.5 times a day) (Figure 6).

Figure 5 
Households in 
NTAs face more 
power outages than 
those in the district 
headquarters

Source: Authors’ analysis  

4. Quality of electricity supply in households



What Smart Meters Can Tell Us? Insights on Electricity Supply and Use in Mathura and Bareilly Households40

To better understand the pattern of outages, we analysed the outage frequency and its 
duration. Figure 6 shows the share of short (less than 15 minutes), medium (15–30 minutes) 
and long (more than 30 minutes) duration outages in the daily outage frequency. It can be 
seen that across all residential areas most power interruptions last for a short duration, 
though NTAs also suffer from a few long-duration power cuts.

Our conversation with utility officials and staff suggest that most outages can be attributed to 
two factors: tripping/faults and unscheduled load-shedding/shutdowns due to repair work 
or infrastructure upgrades. A major share of faults and even shutdowns during the monsoon 
months in North India are due to storms. Other reasons behind faults include blowing of fuse 
in houses, or loose connections due to monkeys dangling on electrical wires. The latter is a 
major concern in Mathura.

When we spoke to officials and linemen regarding the higher outages in NTAs of Mathura, 
they informed us that they happen mainly due to unscheduled load-shedding, which is 
undertaken to facilitate the infrastructure expansion or upgrades, such as replacement of old 
cables and electricity poles, and laying of underground lines under the IPDS programme. In 
Sonkh, scheduled load-shedding for 30–60 minutes is undertaken during the morning hours 
to prevent the use of water motors, so that the drinking water supply can reach all homes.

In contrast, officials in Bareilly NTAs state that higher outages in NTAs are partly due to 
scheduled load-shedding, as district authorities have been directed to supply electricity for 
around 20 hours a day in NTAs. This is evident from a higher share of medium and long dura-
tion (>30 minutes) outages in both Faridpur and Nawabganj.

Figure 6: Households in NTAs endure frequent power cuts, though most are of short duration

Source: Authors’ analysis

Most outages are 
of short duration 
and can be 
attributed to faults 
and unscheduled 
load shedding
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An assessment of the timing of outages reveals that majority interruptions happened during 
daytime (Figure 7). This is encouraging as fewer interruptions happened during the night 
hours of peak electricity consumption when residential consumers need electricity the most.

Figure 7 
Across all residential 
areas, most power 
cuts happen during 
the daylight hours 

The boxplots show the 
variation in values across all 
residential areas covered in 

each district.

Source: Authors’ analysis  

Quality of electricity supply in households

We observe that the duration is quite good in many urban areas, but gaps in supply are 
visible in smaller town areas. Our findings on power outages differ significantly from the 
outage duration at 11 kV feeders reported by the discoms. As per the Urja portal, Bareilly and 
Mathura faced total power outage of 3.5 and 4.8 hours in July 2019 at 11 kV feeder level (Minis-
try of Power 2020), which is quite low as compared to what our data suggests. This difference 
highlights that the gaps in capacity and health of the distribution network can translate into 
low supply hours to the final consumers than what is claimed or supplied at the feeder level. 
To achieve the policy target of uninterrupted power supply, it would be crucial to monitor 
supply quality at the end-user level and address the issues efficiently.

4.2 Voltage profile
We analysed the supply voltages received by the sampled households located in different res-
idential areas. We use the average voltage value for every 3-minute timestamp and estimate 
the proportion for which voltage values remain within the prescribed ±6 per cent range of 
230 V (UPERC 2005). Figure 8 shows the distribution of supply voltages received by sample 
households in each residential area between May and October 2019.

Of the residential areas covered in this study, 70 per cent received voltages falling outside 
the prescribed 230 V ± 6 per cent range (216–244 V) for more than 50 per cent of the total 
duration. Looking at the 230V ± 10 per cent range, every second household received voltage 
outside this range for at least 25 per cent of the observed duration. Significantly high-volt-
age supply was observed across most urban areas and a few areas in the districts covered 
received a low-voltage supply for a significant duration.

Outages observed 
at the household 
level (2 hours/
day) are much 
higher than those 
reported at the 
feeder level (3.5-
4.8 hours/month)
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The issue of high voltage was observed across all, except two, residential areas. This problem 
is particularly daunting in the Jankipuram area of Bareilly where supply voltages remain 
higher than the prescribed limits for the majority of the time. We also observe several instanc-
es when the maximum voltage recorded in a timestamp exceeds 350 V. Such issues occurred 
mainly in NTAs in Mathura and Bareilly districts. One of our sample households lost a few 
appliances to power surge; in another instance, one of our smart meters got damaged. Even a 
few instances of such high voltage supply pose serious risks to consumer and appliance safe-
ty, particularly because many households rely on appliances manufactured locally, which are 
often not compliant with BIS safety regulations. It is therefore important that utilities actively 
investigate the reasons for such deviations and implement appropriate mechanisms to regu-
late the supply voltage.

The issue of low-voltage supply (below 207 V) was noted only in a few residential areas, 
particularly Chamunda Colony, where households received very low voltages for the major 
duration of supply. Field verification suggests that this issue arises mainly due to inadequate 
transformer capacity and also partly due to the prevalence of electricity theft and high-use 
of motor equipment in this area. We also observed low voltages in a few households in two 
NTAs: Goverdhan in Mathura and Faridpur in Bareilly.

Figure 8: Almost all residential areas face high-voltage issues

Source: Authors’ analysis
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Figure 9 
Households in a few 
residential areas 
faced very high 
voltage drops during 
peak hours

Coloured lines represent 
hourly voltage profile of 
individual households. In 
some parts of Bareilly, our 
data collection started from 
August 2019.

Source: Authors’ analysis  

Quality of electricity supply in households

Figure 9 shows the average monthly voltage profile of households sampled in three areas. 
Most sample households in these areas receive very low-voltage supply for most of the ob-
served months. The profile improves somewhat during September and October, potentially 
due to reduced electricity demand. A few households in Faridpur and Goverdhan area have 
desirable voltage profile, and these are connected to different feeders than the households 
receiving poor supply.

Low voltage levels during the non-peak hours can be attributed to power demand in these 
areas exceeding the planned distribution capacity. We also notice that voltage drops are par-
ticularly high (25–30 per cent drop) during the peak hours. Such high levels of voltage drop 
when residential demand is at its peak (see Chapter 5) imply increased current withdrawals 
and higher energy losses in the distribution line. Thus, there is an urgent need for load as-
sessment and capacity expansion in these residential areas.

4.3 Sanctioned versus maximum demand
The gaps in supply duration and spike or drop in voltages can be partly understood by 
comparing consumers’ maximum demand with their sanctioned load. Domestic consumers 
are assigned electricity connections with a sanctioned or contracted load based on typical 
appliances owned by them. Discoms use this information for network planning and demand 
assessment. However, over time, consumers buy new appliances, which spikes up their max-
imum demand and increases the net load that a distribution network has to bear. At present, 
discoms rely on a manual process to ascertain the maximum demand of consumers through 
meter readings, and even this exercise is not undertaken regularly. In the event of several 
households exceeding their sanctioned load during the peak demand period, which may 
force the discoms to undertake load-shedding.
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Figure 10 
One-sixth of sample 
households exceed 
their sanctioned 
load frequently 
during three or more 

consecutive months

Source: Authors’ analysis  

3. The sanctioned load is the maximum electrical load in kW or kVA agreed to be supplied by the discom. The  
 maximum demand is the average load in kW or kVA recorded during a 30-minute period of maximum use in  
 the billing period.

While our sample is not representative of the consumers served by any distribution trans-
former, we compared the sanctioned load and maximum demand of our sampled households 
to understand the gravity of the matter. We used the 30-minute average load (kW) of house-
holds for each month to analyse whether or not they exceed their sanctioned load. Figure 10 
shows that nearly 30 per cent of the sampled households exceed the contracted load at least 
once. Half of these households frequently breached the sanctioned limits for three or more 
consecutive months, while the rest did so just once or twice in a month or two. While the 
latter cases are not a major concern, households in the former category, which are situated 
largely in Mathura, need upgrading of their sanctioned load as per the utility norms.

All the households drawing excess power for three or more months use ACs, but most have 
a sanctioned load of 1–2 kW. Most of them started using the AC only recently (less than five 
years), even though they have been using electricity for decades. Thus, with rapid uptake of 
ACs, discoms will need to assess maximum demand and adequacy of distribution capacity 
on a more frequent basis. Smart meters can facilitate this process immensely by auto-flagging 
the consumers exceeding their sanctioned load for a pre-defined period. Discoms could then 
easily identify the feeders/DTs with more violations and take suitable measures.
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In this chapter, we discuss the electricity consumption patterns of the sampled households, 
and also look at what causes variation in demand and its drivers. We also explain how 

the utilities can use the smart meter data to identify the customer segments and appliances 
contributing the most to the peak demand and make use of innovative measures for demand 
management. 

5. Electricity use in the households

The electricity demand profile of Indian 
households is set to become peaky with an 
increase in air conditioner use.

Image: Alina Sen/CEEW



What Smart Meters Can Tell Us? Insights on Electricity Supply and Use in Mathura and Bareilly Households46

Figure 11 
Household 
electricity 
consumption in 
Mathura sample 
peaks during June

The black dots 
correspond to the average 
monthly consumption 
for a given month. The 
data collection in Bareilly 
started in July 2019, so 
we do not have data for 
May–June.

Source: Authors’ analysis  

5.1 Variation in consumption pattern
As per the data from smart meters, between May and October 2019, sampled households 
consumed 280 units of electricity per month. However, consumption varies significantly 
across households, from as low as low 15 units a month to 970 units a month. In total, 20 per 
cent of the sampled households spent less than 100 units per month, while 15 per cent used 
more 500 units per month. This demonstrates that our sample comprises a wide spectrum of 
electricity consumers, confirming the utility of our sampling strategy of selecting households 
by their appliance ownership and house size (number of rooms).

Figure 11 shows the variation in households’ electricity demand across months. Power 
consumption in Mathura is highest in June, the hottest month of the year. The consumption 
declines marginally during the monsoon months of July–September, potentially due to re-
duced loads due to drop in temperature, and reduces significantly during October when most 
households tend not to use their cooling appliances or use them very minimally.

Figure 12 shows the daily variation in the electricity demand of sample households in Bareilly 
and Mathura. The average demand of households in Mathura sample peaks around midnight 
and is highest between late evening and early morning (8 p.m. to 5 a.m.). This consumption 
pattern clearly shows that the residential users consume most electricity during late evening 
and night when most household members are at home, and a majority of the cooling appli-
ances are switched on. This kind of usage has significant implications in the state of Uttar 
Pradesh, where the residential sector accounts for 42 per cent of total power sales (PFC 2017), 
and electricity demand typically peaks during the night hours during summer and monsoon 
(POSOCO 2016). Annexure 4 shows the typical demand pattern for UP. As the temperatures 
are highest at around 3 p.m., we witness a secondary peak during the afternoon. This can be 
due to the presence of fewer household members are at home during the daytime. Overall, 
the load curve flattens significantly going from September to October. 
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Figure 12: Household electricity use peaks during the night
 (a)  Electricity demand of households sampled in Mathura, by months

 (b)  Electricity demand of households sampled in Bareilly, by months

Source: Authors’ analysis  

We observe similar trends for households sampled in Bareilly (Figure 12(b)). However, the 
average peak demand, as well as typical load levels, are much lower than those observed in 
Mathura households, across different months. We infer that the differences can be attribut-
ed to appliance ownership pattern. However, a higher share of households in the Bareilly 
sample (41 per cent) have ACs as compared to samples in Mathura (32 per cent), and both dis-
tricts have a comparable temperature profile (see Annexure 5). This suggests that household 
electricity use is a function of various factors. We discuss the contributing factors in more 
detail in subsequent sections.
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4. To obtain the average electricity load, we first down-sampled the 3-minute data by taking the average for each  
 household to 15-minute interval for each day. Then, we averaged the data of all households for each block for  
 each day in a month. Days when less than 10 meters communicated were dropped.

Figure 13 
Economically better 
off households own a 
higher number of cooling 
appliances

Source: Authors’ analysis  

5.2 Key drivers of electricity demand
In order to understand the variation in electricity demand, it is important to understand its 
key drivers. We conducted a linear regression analysis keeping the average monthly electric-
ity demand of households between May and October as the independent variable (results in 
Annexure 6).

As per our data, household expenditure emerges as the most important determinant of de-
mand. This is likely because households that indulge in higher expenses have more appli-
ances and a higher propensity for their usage. Other factors are not statistically significant, 
mainly due to the high standard error associated with the small sample size.

We explore the relationship between household expenditure and electricity demand with the 
help of a cooling appliance index, a measure of the types and number of cooling applianc-
es in a household. See Box 1 for details on index construction. We find that the index has a 
strong positive correlation with the monthly household expenditure, as reported during the 
surveys (Figure 13). It becomes clear that with an increase in income levels of the household, 
their ownership of cooling appliances would increase and with it, the household electricity 
demand during the summer and monsoon seasons.
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Table 2 
Cooling appliance 
index increases 
with the ownership 
of advanced 
cooling appliances 

Source: Authors’ analysis  

Sample Size

17

15

24

16

15

93

Cooling appliances index increases with the ownership of advanced cooling appliances

Appliances

Only fans

Only fans and refrigerator

Only fan, refrigerator and cooler

Only fan, refrigerator and air conditioner

All four appliances

Any of the four cooling appliances

Mean

0.69

2.97

4.56

5.09

7.08

3.96

Min.

0

1.77

2.84

3.94

5.01

0

Max.

1.96

5.02

9.37

7.66

10

10

Cooling appliance index

We use the approach proposed by Filmer and Pritchett (2001) to construct a 
cooling appliance index based on the number of typical cooling appliances 
used in households: fans, refrigerators, coolers, and ACs. We first obtained 
weights for each variable (number of fans, coolers, refrigerators, and ACs) 
using the principal component analysis and applied those weights on the 
normalised values of each variable. This gave us the cooling appliance index, 
which shows negative values for around 50 per cent of the sample households. 
For ease of interpretation, we rescaled this index such that the final index val-
ues range between 0 and 10. For this purpose, we used feature scaling (or min–
max scaling) formula:  Xnorm (or (IVx))=(X – Xmin)/(Xmax – Xmin), where IVx 
is the normalised index value, Xmin is the initial minimum value (–2.31) and 
Xmax was the initial maximum value (3.52) of the cooling appliance index.

The index takes values between 0 and 10 and is a monotonically increasing 
function of cooling appliance ownership, i.e., a higher value for ownership of 
higher-order cooling appliances. Table 2 shows the index values for households 
grouped by appliances owned.

One can see that households owning just fans have the lowest mean score, 
and it keeps on increasing with the ownership of more and more appliances. 
For instance, households with fans and refrigerator have a higher mean score 
(2.97) when compared with households owning only fans (0.69). As the index 
value depends on the number and type of appliances owned, we observe some 
overlaps in the minimum and the maximum values across categories. However, 
the robustness of the index can be established by the fact that it automatically 
assigns a higher score to households that possess a higher-order appliance 
(measured by the rarity of the appliance). For instance, households with fans, 
refrigerator and AC have a higher score compared to households with fans, 
refrigerator, and cooler, despite both of them having three appliances.
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5.3 Profiling customers driving peak demand
Utilities can classify households as low- or high-consumption consumers based on their 
monthly consumption data, but such classification does not necessarily reflect their 
contribution to peak load. In order to identify consumers and appliances contributing 
the most to peak load, we employ k-means clustering and segment households into four 
clusters based on their load profile in August. We have classified these as low, moder-
ate, high, and very-high demand clusters.

Figure 14 shows that the high and very-high demand clusters comprise households 
driving the night-time peak demand. The moderate demand cluster also displays a 
slightly higher demand during night, while low-demand cluster has a nearly flat load 
profile. Figure 15 shows the variation in load parameters and the load factor of the three 
segments. As expected, the load factor of high and very-high demand clusters is lower 
than the desirable limit of 60 per cent.

Figure 14: The sampled households can be classified into four clusters based on load 
profile, from low to very high levels of demand

Source: Authors’ analysis

5. As we do not have data for May–July for many households in the Bareilly sample, we have done this analysis  
 for the month of August. Annexure 7 provides the detailed methodology employed for the clustering process.

6. Load factor is the ratio of the total number of units consumed during a given period to the total number of  
 units that would have been consumed had the maximum load been maintained throughout the same period.
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Figure 15: The load factor of households in very high demand clusters is less than 60 per cent

Electricity use in the households

(a) Ownership of cooling appliances

Figure 16 
Demand clusters 
have varied appliance 
inventory and 
expenditure levels

Source: Authors’ analysis  

We analysed the appliance ownership and household expenses of the households within 
these four clusters to understand the customer profile. Figure 16(a) shows that the appliance 
ownership is indeed a key differentiating factor. Low-demand households, with nearly flat 
load profiles, primarily rely on fans for air circulation during summer. Moderate demand 
households predominantly use coolers, with a few using ACs. A few AC users may fall in 
this category, potentially due to their conservative use of ACs. High-demand households are 
predominantly AC users, with a few having large coolers. Very-high demand households, 
which are a few in our sample, typically have an AC and a cooler, or sometimes two ACs, 
due to which they have highly skewed load curve, with very high peak demand during the 
night-time. We also notice that these segments also differ in terms of their economic profile, 
as average monthly expenditure of the households in these segments increases with demand 
level (Figure 16 (b)).

Source: Authors’ analysis
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As this segmentation is based on data for August, we assess the reliability of this clustering 
methodology for other months by analysing the monthly variation in electricity demand from 
all the clusters. Figure 17 shows that there is a significant inter-cluster variation in household 
demand across months. Similarly, the intra-cluster variation in demand tends to be small, 
particularly for low and moderate demand clusters. However, there are some exceptions, 
suggesting that segmentation using data from different months would have yielded slightly 
different results. For greater accuracy of customer segmentation, the demand patterns in a 
larger sample of households need to be assessed.

It can also be seen that low-demand households have nearly the same consumption profile 
across all the months, which indicates their limited capacity to change appliance use be-
haviour. In contrast, the electricity demand of households in the very-high and high-demand 
clusters varies widely across months and is highest between June and August. Thus, the high 
overall demand, as well as the high peak demand, emanates from households with advanced 
cooling appliances.

(b) Household expenses and no. of cooling appliances

Figure 17: Electricity use in high-demand clusters varies significantly across months

Source: Authors’ analysis
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5.4 Air conditioner usage pattern
The ownership and use of air conditioner (AC) is a key factor determining the household’s 
electricity demand and its load profile. The usage pattern of ACs by households, therefore, 
assume importance. Out of the 93 sampled households, 34 of them own an AC. Of these, 
all except two have a single AC. To understand AC usage pattern, we analysed the current 
signature of households having one AC with the help of 3-minute interval data. We identified 
the compressor on/off events by locating the events in the current time series of nearly equal 
magnitude and opposite sign.

Figure 18 shows the current profile of two households that possess non-inverter window AC 
of 1.5-ton capacity but having different ratings, age, and usage pattern. The compressor in 
Figure 18(a) remains ‘on’ for nearly all hours of AC use, indicating a very high compressor 
activity rate (97 per cent). This potentially reflects the use of an undersized AC or a preference 
for low-temperature setpoint due to which the compressor has to work for a longer duration. 
In contrast, the AC compressor in Figure 18(b) cycles on/off with high frequency during the 
night hours (every 3 minutes) but moderately (within 15 minutes) during the day. As per our 
conversations with the AC manufacturers, such high cycling rates during night-time may be 
due to high humidity but low ambient temperature levels (due to rainy season). See Box 2 for 
details on the working of AC compressors.

Figure 18: Current profile and AC ‘on/off’ event detection for two sample households 

(a)    A household with 1.5 ton new 3-star window AC [date: 01-08-2019]

Source: Authors’ analysis
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(b)   A household with 1.5 ton 4-year-old 5-star window AC [date: 03-08-2019]

Compressor operation in fixed-speed and inverter air conditioners

A working air-conditioning unit accomplishes two functions: reducing temperature and 
humidity levels. This is achieved with the help of a compressor that compresses the 
refrigerant gas in the AC to cool it, which in turn cools the incoming air from the room in 
the evaporator unit.

In fixed-speed ACs, the compressors work as long as the ambient temperature is higher 
than the set temperature or the humidity levels are higher than the optimal levels. Thus, 
the compressor turns ‘on’ and ‘off’ depending upon the requirement. Moreover, each 
time the compressor turns ‘on’, it draws a high starting current and operates at a fixed 
speed thereafter. The size of the room also determines the compressor cycling rate. 
Thus, the fixed-speed AC compressor is ‘on’ for a longer duration, if
 •     the AC is under-sized, i.e., of lower than required capacity based on the room size,
 •     the ambient temperature levels are very high, implying a higher need for cooling,     
        and
 •     the relative humidity levels are high, such as during monsoon months, implying a  
        higher need for moisture reduction.

In contrast, inverter ACs have variable speed compressors, which can operate at differ-
ent speeds (25–100 per cent). Here, the compressor is always ‘on’, though the compres-
sor speed and hence the current drawn is higher when the AC starts and is adjusted to 
keep the temperature and humidity at the desired levels. When ambient temperatures 
or humidity levels are not very high, inverter ACs can operate at a lower load. This is 
why inverter ACs draw less power and energy on an average than non-inverter ACs and 
are more energy-efficient as well. Consumers shifting to inverter ACs stand to benefit as 
energy consumption becomes lower (depending upon usage hours). It would also be 
beneficial for the utilities as these ACs tend to have a softer start (absence of starting 
current spike) and lower power requirement (Goyal 2014)

Source: Authors’ analysis
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7. We only consider households for which at least an entire week’s data for one of the key summer months   
  (May–August) is available. Overall, eight households were excluded and all these are from the Bareilly   
  sample.

Electricity use in the households

Daily hours of AC use

With the help of compressor ‘on/off’ events, we estimated the daily hours of AC use, which 
includes compressor ‘on’ time and compressor ‘off’ time (when the time between two con-
secutive compressor ‘on’ and ‘off’ event is less than 20 minutes). We find that the sample 
households used the AC for an average of 5.5 hours a day between May and October. AC usage 
varies across households and with seasonal changes. Figure 19 shows that AC usage is higher 
between June and September and reduces significantly in October when the average tempera-
ture drops below 28 degrees Celsius.

Figure 19: Average hours of AC usage varies with seasonal changes

Figure 19 
Average hours of AC 
usage varies with 
seasonal changes

The black dots correspond to 
the average values. The data 
collection in Bareilly started 
in July 2019, so we do not 

have data for May–June.

Source: Authors’ analysis  

We also observe that many AC users in Mathura district use the AC for a longer duration than 
those in Bareilly district. This variation in usage pattern could be partly linked to the house-
hold’s economic profile, as the income of households in the Mathura sample is slightly high-
er than those in the Bareilly sample. Figure 20 also shows that hours of AC use has a positive 
correlation (coefficient = 0.31) with the household’s monthly expenditure (a proxy for income 
levels). This suggests that even though many sample households use ACs conservatively at 
present, their usage is likely to go up with an increase in income levels. The wide variation 
in AC usage patterns underscores the importance of identifying the factors that drive higher 
usage.
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Figure 20 
Better off households 
tend to use AC for 
longer hours.

Source: Authors’ analysis  

Figure 21 
AC compressor 
activity rate is 
typically higher for 
low-temperature 
set points

Source: Authors’ analysis  

Compressor activity rate for AC

We also analysed the compressor activity rate (CAR) for ACs in our sample and estimated it as 
the ratio between compressor ‘on’ time and hours of AC use. We find that the average CAR for 
AC users in our sample is 80 per cent, and it varies between 40 and 100 per cent. In nearly 50 
per cent of the cases, the compressor was ‘on’ for 80–100 per cent duration, which is rela-
tively higher than a typical assumption of 60 per cent. Basic correlation analysis confirms 
that the CAR is strongly and negatively correlated (coefficient =-0.42) with the temperature 
setpoint, as reported by the air-conditioner-using households during the surveys (Figure 21). 
Households using the AC at lower set points tend to have a higher CAR, as the compressor 
has to run for a longer duration to achieve the set point. 
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As per the Bureau of Energy Efficiency (BEE), the ideal room temperature is 24-25˚C. However, 
60 per cent users typically run their air-conditioners at 16-22 degrees, which is associated 
with higher CAR and, thus, higher energy consumption. To encourage the use of ACs effi-
ciently, BEE has recently mandated that all ACs should have a default temperature setting of 
24 degrees (ANI 2020). A sustained campaign to educate consumers about the benefits of us-
ing AC at a higher setpoint would also help households save on energy bills associated with 
AC use. However, households using AC at high-temperature setpoint may also have high CAR, 
as shown in Figure 21. This may be due to the use of under-sized AC or high thermal leakage 
from the building. Smart-meter enabled diagnosis of AC compressor activity could help the 
users to identify appropriate strategies to optimise their AC energy consumption.

Role of usage pattern in the economics of energy-
efficient ACs

We also analysed the annual hours of AC usage for 11 households in our sample, for which 
data for all six months is available. We find that the sample households use AC for an average 
of 1020 hours/year, and the usage varies across households from 400 to 1800 hours/year, 
assuming that households start using the AC from May onwards.8 For these households, 
electricity use for AC constitutes 20-50 per cent of total monthly demand between May and 
October, which is a significant contribution (Figure 22). Moreover, the share of AC in total 
demand increases with higher AC use.
 

Figure 22 
Contribution of 
ACs in household 
electricity demand 
increases with usage 
hours

Source: Authors’ analysis  

8.   All air conditioner using households in our survey reported that they use the air conditioner for 2–4 months  
   in a year. So, we assume that the air conditioner use during April is zero due to lack of data for that month.

The use of more efficient ACs, identified by BEE star labels, could help the consumers reduce 
their energy consumption and electricity bills. However, more efficient AC units are also more 
expensive. The number of hours for which a consumer uses AC has significant implications 
for the potential energy and cost savings associated with the adoption of higher efficiency 
models.
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Table 3 
Capital cost and 
energy consumption 
values for 1.5-ton split 
AC

Source: Authors’ compilation 
for AC models available on 
online retail portals

* ISEER (Indian Seasonal 
Energy Efficiency Ratio) is 
the ratio of the total amount 
of heat energy removed from 
the indoor air in a year to 
the total amount of power 
consumed annually

3.45

3.65

3.7

5.33

1,167

1,103

1,045

767

32,500

34,000

37,000

46,000

ISEER Reported energy consumption 
of AC (units/year) under std. 
conditions and 1600hrs/year

Capital cost
(INR)

AC star rating 
and type

2 star non-inverter

3 star non-inverter

3 star inverter

2 star inverter

Taking the AC usage pattern of the sample households as a reference, we estimated the 
payback time if the users were to choose higher star-labelled AC over a 2-star non-inverter AC. 
We did this analysis for 1.5-ton split AC for both non-inverter and inverter technology. Table 
3 shows the cost and energy specifications of the AC models considered for this analysis. See 
Annexure 8 for detailed calculations on energy consumption and cost savings when con-
sumers with different usage patterns were to make a choice between different star-labelled 
ACs. For this analysis, we assume that households use AC under standard test conditions. We 
assumed the power tariff of INR 6.5 /unit, which is the rate applicable for consumption slab of 
300-500 unit/month, as per the latest tariff in UP.
 

2.7

3.2

4.0

6.0

16.0

4.2

5.0

6.3

9.5

25.2

2,160

1,800

1,440

960

360

3-star non-
inverter AC

Annual hours 
of AC use

AC use pattern

6 months, 12 hours/day

6 months, 10 hours/day

6 months, 8 hours/day

6 months, 5.3 hours/day

6 months, 2 hours/day

3.8

4.6

5.8

8.7

23.1

3-star 
inverter AC

5-star 
inverter AC

Payback time for extra investment on a 
higher star AC over a 2-star non-inverter AC

Table 4 
Payback time for 
extra investment on 
higher star-labelled 
ACs depend on the 
usage hours

Source: Authors’ analysis

Table 4 shows that households that use AC for more than 1800 hours, i.e., 12 hours a day for 
five months in a year, would be able to recover the additional expenditure on a 3-star non-in-
verter AC within 3 years and that on 5-star inverter AC in less than 5 years. For such house-
holds, it would be cost-effective to choose an inverter or higher star-labelled AC over a 2-star 
non-inverter AC.

However, for consumers who use the AC conservatively, i.e., for a shorter duration, the 
payback period for extra investment on a 3- or 5-star inverter AC could range from 5-25 years, 
when the designated life of an AC is just 5-6 years. Households with less than 1000 hours of 
annual AC use may not find even a 3-star non-inverter AC attractive at the current price and 
tariff rates. 
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Such high payback periods for households displaying conservative AC usage raises questions 
regarding the assumptions used for designing star labels.  BEE assumes AC usage of 1600 
hours for estimating the energy consumption of AC listed on the star labels, which is much 
higher than the annual usage displayed by most consumers sampled in this study. While 
our sample is not representative of all AC users in the country, star labels must reflect energy 
consumption values based on representative usage.
 
More importantly, we notice that the energy consumption values on BEE star labels are quite 
low as compared to the actual consumption witnessed by consumers. As per our estimates 
using smart meter data, a sample household using a new 1.5-ton non-inverter 3-star split AC 
for 360 hours/year consumes 645 units for running the AC, which is 2.6 times the consump-
tion one would expect as per the values listed on BEE star label (see Annexure 8). This is 
mainly due to the difference between the test and the use conditions of AC. BEE tests the en-
ergy efficiency of the ACs based on their ability to cool a space to 27˚C at 50 per cent relative 
humidity and an ambient temperature of 35˚C  (Somvanshi 2019). However, most households 
use ACs at higher set points, and even the prescribed setpoint is 24˚C. As ACs consume more 
energy at lower temperature set-points, consumers using AC at setting lower than 27˚C are 
bound to use more energy than that printed on the star label. Further, the ACs are tested for a 
standard ambient condition whereas the ACs are used under varied climatic conditions in the 
country. Our analysis suggests that the consumption values listed on the star labels are not 
representative of the real-world performance of ACs. 

In this regard, smart-meters can help generate empirical evidence about household prefer-
ences concerning AC use as well as actual energy consumption by ACs under various ambient 
conditions. Such evidence could be used for designing more realistic star-labels, such that 
consumers can make informed decisions concerning AC purchase and use. 

Smart meter data-enabled decision making

Discoms could help the consumers to make the right decision by providing insights about 
their AC usage pattern with the help of smart meter data. We observe that there is a signifi-
cant difference in the appliance usage perceived by the households and the actual observed 
usage gathered from the smart meter data. While 60 per cent of the AC users under-estimated 
their usage of the AC by an average of 4 hours a day, the rest over-estimated the usage typi-
cally by 3 hours a day. This clearly shows how people tend to wrongly estimate their energy 
consumption and have inadequate information to optimise their usage or purchase decisions. 

Sharing of feedback on the household’s energy usage in general, and AC use in particular, 
could help the households keep a better check on their AC use. This measure would lead to 
people trusting their electricity bills. During the surveys, many households complained that 
the electricity bills were too high despite their electricity use being limited. Discoms could 
consider indicating estimates for hours of AC use in the electricity bill. For consumers already 
having an AC, this information would help them make an informed decision for buying a sec-
ond AC. For others, discoms could first identify aspiring consumers (based on their monthly 
consumption during summers) and give advisories based on observations from existing AC 
users. For instance, discoms could create typical usage profile of AC consumers at a substa-
tion/feeder level, and use it to generate customised advisories.
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Image: Alina Sen/CEEW

Insights from smart meter data can help the 
households keep a better check on their overall 
energy consumption  

Image: Alina Sen/CEEW
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6. Discussion and recommendations

Power utilities or discoms in India face the daunting task of meeting the rising electricity 
demand by offering reliable electricity services, at the same time engaging in efforts to 

recover the costs of operation and continually allocating resources to invest in upgrading the 
power infrastructure. The continually surging residential demand, which makes up one-
fourth of the country’s power consumption, adds up to the challenges of discoms. A clear 
understanding of the electricity usage patterns at the household level and its variation with 
time and season, and household preferences, would help discoms draw an efficient plan for 
load management and infrastructure strategies. The limited information from conventional 
meters at low frequency of data collection does not render it suitable for demand analysis. 
The smart meter technology offers an opportunity for power utilities to gain a clear picture of 
household usage patterns and suitably manage the rising electricity demand.

We explored the ways in which smart meters can help discoms track and effectively manage 
the residential electricity demand and assist in the design, planning, and operation of the 
distribution network in an efficient manner. To accomplish our objective, we collected data 
from smart meters installed at 93 urban households in two districts—Mathura and Bareil-
ly—in the state of Uttar Pradesh. As our sample is small and not statistically representative 
of the focus population, we ensured diversity in our sample by choosing households having 
a varied appliance inventory and living in residential areas falling under the jurisdiction of 
different substations. Our findings are only indicative of the variation in supply situation and 
demand patterns. We believe that a similar assessment could be done at scale with the help 
of smart meters deployed by the discoms.

Monitoring and managing network health and supply 
quality

As discussed in this report, we found variations in the duration and quality of electricity sup-
ply in both districts. The monitored households received an average supply of 22 hours a day 
in our study period between May and October 2019. The duration of supply varied even across 
urban areas of the same district. Households in NTAs, which are small urban areas, endured 
longer and more frequent outages as compared to those in district headquarters. Most inter-
ruptions were shorter in duration, which indicates the prevalence of faults or unscheduled 
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load-shedding. While a few residential areas in the NTAs received consistently low voltages, 
with voltage drops reaching 25–30 per cent during peak load, in contrast, most others faced 
the challenge of high-voltage supply endangering life and equipment.

Our findings highlight the need for the discoms to actively monitor the supply situation at the 
end-consumer level to locate areas with poor voltage profile, potentially indicating capacity 
gaps, unforeseen increase in demand or electricity theft. Accordingly, discoms can take ap-
propriate measures for voltage regulation and capacity upgradation. Using smart meter data, 
discoms get tail-end visibility, which can be effectively utilised for predictive maintenance 
and infrastructure upgrades.

We also noticed that nearly one-third of the sampled households drew power in excess of 
their respective sanctioned load, though one-sixth of the surveyed consumers did so for 
three or more consecutive months, which is a serious concern. At present, discoms rely on a 
manual process to ascertain the maximum demand of consumers through meter readings, 
and even this exercise is not undertaken regularly. This partly explains why voltage drops 
and transformer burnouts are not uncommon. Smart meters can give discoms a greater 
understanding of consumer demand in real time, which they could use to identify consumers 
exceeding their sanctioned load for a sustained period of time. Discoms, in addition to plan-
ning for infrastructure expansion to meet the rise in peak demand, which lasts for a small 
fraction of total time blocks in a year, should also explore alternative supply augmentation 
strategies, demand shifting, distributed generation, and storage (Parray and Tongia 2019). 

Planning for the rise in overall and peak demand for 
electricity

As discussed earlier, we observed that electricity use in households is commensurate with 
their economic status. Increased income of the household means it can afford to have ad-
vanced cooling appliances. In our sample, households using only fans consumed less than 
250 units a month, but those with coolers and ACs display a wide variation in electricity 
usage, exhausting anywhere between 200 and 1000 units a month, during our study period 
between May and October 2019. With increase in income levels as well as the rise in tempera-
tures due to climate change, more households are likely to install coolers and ACs at home for 
space cooling. This would definitely lead to a surge in demand.

Although increase in demand would convert into higher revenue for discoms, load manage-
ment challenges await them in terms of higher use of ACs, as they are the major contributors 
to peak demand during night-time. Between May and October, the monitored households 
used the AC for an average 5.5 hours a day, with majority of the use concentrated around 
midnight. In order to meet such sudden spike in demand, discoms need to procure fast-ramp-
ing peaking power, which is more expensive. Thus, it would become crucial for the discoms 
to track and anticipate the uptake of these appliances and employ diverse strategies for 
demand-side management.

Discoms must use 
smart meter data 
for monitoring 
supply quality, 
predictive 
maintenance and 
infrastructure 
planning

Smart meter 
data can help 
discoms provide 
energy feedback 
to consumers 
and implement 
time of use tariffs 
for better load 
management
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Devising innovative strategies for demand management

Granular insights on household electricity use can help the utilities assess and design suit-
able mechanisms to manage the rising demand at the consumer end. As discussed earlier, 
households often have inadequate information about their electricity use, as many of them 
tend to over-estimate or under-estimate their appliance use. By providing information about 
energy use on a daily or weekly basis, discoms could push the consumers towards using 
electricity in a conservative manner as well as help them take optimal decisions concerning 
appliance purchase. For instance, discoms could provide customised advisory to households 
indulging in high AC use and potential savings from switching to a more efficient AC. A peri-
odic feedback to consumers on self-consumption and that of others on their electricity bills 
or through mobile communication could also help in lowering consumption.

Discoms must also design and test mechanisms for demand response, such as time of use 
(ToU) pricing, which is applied for commercial and industrial customers in India. However, if 
this tool has to be extended to domestic consumers in India, it would be essential to identify 
the target audience, such that the ToU scheme is both effective (yields the desired demand 
reduction) and equitable (doesn’t burden less affluent consumers). As our analysis suggests, 
it is the households using ACs and/or coolers that contribute to the peak demand and they 
could be targeted for demand response. Smart meter data can help discoms identify con-
sumers who drive the peak demand as they tend to have a markedly different load profile. 
Price-sensitive consumers could realise savings by avoiding consumption at peak hours, 
especially of the AC as it accounts for a significant share of the overall consumption. Further 
research is needed to explore potential tariff designs and their effectiveness in generating 
adequate response from the consumers.

Another demand management strategy that discoms must explore is incentivising consumers 
who exhibit peak consumption to adopt distributed solar generation and/or battery stor-
age. This way consumers can reduce their withdrawals from the grid during peak hours and 
discoms could achieve load shaving. Data from smart meters at the consumer and distribu-
tion level could be used to identify strategic pockets for such interventions, helping discoms 
reduce investments required for infrastructure upgrades as well as avoid the purchase of 
expensive power during peak hours. This would also help the discoms achieve their renew-
able energy targets.

India’s power sector is undergoing a rapid transformation, as we are witnessing changes in 
power generation, regulatory measures, as well as consumption patterns. This environment 
provides an opportunity for discoms have to transform from being just an electricity supplier 
to an energy service provider by optimising costs, engaging with the consumers to help them 
save electricity, and improving the overall consumer experience. Smart metering initiatives 
in the country are well timed to enable this transition. Discoms should maximise the utility 
of investments towards smart meters by looking beyond metering, billing, and collection 
efficiencies.

Discussion and recommendations

Smart metering 
infrastructure can 
help discoms to 
transform from 
being just an 
electricity supplier
to an energy 
service provider
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Annexure 1: Demographic characteristics of the sampled 
households
We analysed the key demographic characteristics of the sampled households in Mathura and 
Bareilly districts. Comparing the samples in both these districts, we find that the primary 
decision-makers in the sampled households have similar levels of education and the family 
size doesn’t vary much (Figure A.1).

However, the sample households differ in terms of religion and caste. A majority of sam-
pled households in Mathura district follow the Hindu religion, where less than 10 per cent 
are Muslims; in the Bareilly district, the share of Muslims is relatively higher at 53 per cent. 
This reflects the variation in social composition of the two districts; the share of Muslims in 
Mathura and Bareilly district is 8.5 per cent and 39 per cent, respectively (Census, 2011).

Figure A.1 
Sampled households 
have diverse 
demographic 
characteristics

Source: Authors’ analysis

Annexures

Bareilly (N=49)
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Annexure 2: Supply and consumption parameters 
captured using smart meters
We captured 10 parameters for each household with the help of smart meters, including en-
ergy consumption (kWh and kVAh) and minimum, maximum, and average values for voltage 
and current. We estimate power (kW) values using the kWh values. Table A.1 illustrates the 
format in which data was obtained

Table A.1: Snapshot of data collected for a sample household (MH23, 15 May 2019)

Annexures

Bareilly

MH23

MH23

MH23

MH23

MH23

MH23

MH23

MH23

MH23

MH23

MH23

MH23

MH23

MH23

MH23

MH23

MH23

MH23

MH23

MH23

MH23

5/15/19 0:00

5/15/19 0:03

5/15/19 0:06

5/15/19 0:09

5/15/19 0:12

5/15/19 0:15

5/15/19 0:18

5/15/19 0:21

5/15/19 0:24

5/15/19 0:27

5/15/19 0:30

5/15/19 0:33

5/15/19 0:36

5/15/19 0:39

5/15/19 0:42

5/15/19 0:45

5/15/19 0:48

5/15/19 0:51

5/15/19 0:54

5/15/19 0:57

5/15/19 1:00

0.021

0.09

0.089

0.09

0.09

0.09

0.089

0.089

0.089

0.088

0.09

0.089

0.088

0.089

0.088

0.089

0.088

0.089

0.088

0.088

0.089

0.022

0.09

0.09

0.09

0.09

0.09

0.089

0.089

0.089

0.089

0.089

0.09

0.088

0.089

0.088

0.089

0.089

0.088

0.089

0.088

0.089

231.49

231.93

231.8

231.77

231.99

232.65

232.69

232.68

235.78

239.18

239.38

239.6

239.95

240.77

240.9

241.28

241.37

241.86

242.19

242.29

242.76

232.26

232.19

232.05

232.23

232.37

233.24

233.09

233.09

239.09

239.41

239.84

240.13

240.49

241.22

241.47

241.76

241.72

242.48

242.62

242.59

243.02

230.85

231.72

231.47

231.4

231.72

231.83

232.33

232.15

232.19

238.83

239.05

239.09

239.45

240.2

240.2

240.78

240.89

241.32

241.25

241.87

242.33

2.17

7.9

7.88

7.86

7.85

7.88

7.79

7.78

7.68

7.53

7.56

7.57

7.52

7.48

7.45

7.45

7.5

7.42

7.41

7.41

7.4

2.39

7.91

7.92

7.88

7.91

7.91

7.82

7.8

7.79

7.57

7.62

7.61

7.56

7.5

7.46

7.52

7.51

7.44

7.48

7.45

7.41

1.99

7.85

7.8

7.81

7.84

7.8

7.76

7.75

7.52

7.5

7.55

7.51

7.46

7.44

7.42

7.42

7.43

7.39

7.39

7.38

7.36

50.04

49.98

49.9

49.98

50.02

50.01

49.96

49.97

49.98

50.04

50.04

49.98

49.98

50.04

50.02

50.02

49.98

50.02

50.04

50.04

50.04

Meter_id     x_Timestamp    t_kWh t_kVAh z_Avg.Volt
age..Volt.

z_Max.Vol
tage..Volt.

z_Min.Vol
tage..Volt.

z_Avg.Cur
rent..Amp.

z_Max.Cur
rent.Amp

z_Min.Cur
rent..Amp.

y_Freq..
Hz.

Figure A.2 illustrates the variation of the obtained values over a day for a particular house-
hold. Figure A.2(a) shows that the voltage varies between 220 and 260 V, except when it drops 
to zero. The temporary drop around 8 a.m. seems like a fault, while the extended drop for 
around an hour at 2 p.m. appears to be a case of load-shedding. Figure A.2(b) shows the vari-
ation in electricity use by the household with the help of current and load (kW) values. The 
sustained current spikes of around 5 A between 12 a.m. and 8 a.m. indicate the current drawn 
by the AC, while the short-lived spike around 5 p.m. appear to be current drawn by an electric 
motor load, such as food processor or water pump use.

Attribute

Figure A.2 
Variation in supply 
and consumption 
parameters over a day 
(MH23, 15 May 2019)

Source: Authors’ analysis
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Figure A.3 
Smart meter data 
reading compare well 
with that from discom 
meters)

Source: Authors’ analysis

Annexure 3: Accuracy of smart meter data vis-à-vis data 
from discom meters
We compared the household consumption data recorded by our smart meters with that of the 
discom meters. We conducted manual inspections of 35 households in Mathura district; the 
first and second readings were observed at an interval of 30–45 days. For more than one-third 
of these households (13/35), we couldn’t record the discom meter readings, as they were not 
clearly visible due to marks on the meter casings. For another four households, there were 
gaps in data (data missing for 4 days). So we excluded these households from the present 
analysis. For the remaining 18 meters, consumption as per smart meter reading was within ±7 
per cent error range of the discom meter reading (Figure A.3)

Observation from the field

Many households find it difficult to monitor their consumption from electricity meters, as the 
meter casings lose visibility due to weather conditions. In cases where meter readers rely on 
visual inspection for bill generation, this situation raises concerns about the accuracy of bills 
received by the households. Discoms have begun using hand-held devices to overcome this 
challenge. Use of smart meters would also help overcome this challenge and allow house-
holds to actively monitor their consumption with the help of feedback from discoms.
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Figure A.4 
Typical monthly 
demand pattern in 
Uttar Pradesh

Source: (POSOCO 2016)

Source: (POSOCO 2016))

Annexure 4: Electricity demand pattern in Uttar Pradesh
Figure A.4 shows the total electricity demand pattern across various months in the state of 
Uttar Pradesh. During the months of May-October, the overall state-level demand is highest 
during the night hours.
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Annexure 5: Temperature profile of the districts covered 
in the study
The figure A.5 shows the average and maximum temperatures in Mathura and Bareilly in 
different months. It can be seen that both the districts have comparable temperature profile. 

Source: Climate data (2019)

Figure A.5: Monthly average and maximum temperature in Mathura and Bareilly districts
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9.     We only consider households for which at least an entire week’s data for one of the key summer months (May– 
  August) is available. Overall, eight households were excluded and all these are from the Bareilly sample.

10.  Caste is included as a dummy variable with value 1 for general category households (n=63) and 0 for other  
         categories representing lower social status (n=30).

11.    Religion is included as a dummy variable, with value 0 for Hindu households (n=59) and 1 for other religions  
         (primarily Muslim households) (n=34).

12.    District is included as a dummy variable, with value 1 for Bareilly, and 0 for Mathura.

Annexures

Annexure 6: Regression results for drivers of household 
electricity demand
We assumed the natural log of average monthly consumption (kWh) obtained from the smart 
meter data as the dependent variable. We included average monthly expenditure (natural 
log) of the households as a key explanatory variable, as past studies have found the house-
hold’s economic status as a major driver of electricity demand. We also included all import-
ant covariates expected to be associated with electricity consumption in line with the past 
studies. These include demographic factors such as the highest education of primary deci-
sion-maker, household caste, religion, and household size. We also controlled for the average 
hours of power supply received by the households (supply_hrs) and quality of voltage supply 
measured by the proportion of total duration when the households received to low-voltage 
supply (low_vol_dur). Finally, we also included district-level fixed effects to account for the 
variation in unspecified district-level factors that could affect household consumption of grid 
electricity.

Table A.2 presents the regression results. The model can explain around half of the total vari-
ation in monthly electricity consumption. However, due to the small sample size (leading to 
high variance in the residuals), most variables do not assume the required significance level.

*** p<.01, ** p<.05, * p<.1

Coef.        St.Err.       p-value       95% Confidence interval       Sig

Bareilly

edu_school_upto9

edu_school_upto12

edu_collegegrad

caste_general

religion_hindu

lnhhsize

occu_salaried

occu_business

lnmonthexp

low_vol_dur

supply_hrs

districtfe

Constant

-0.040

0.336

0.068

0.055

0.156

-0.052

0.444

0.824

0.438

-0.006

0.060

-0.305

-0.506

0.236

0.261

0.269

0.183

0.216

0.212

0.287

0.237

0.126

0.004

0.060

0.192

1.865

0.867

0.203

0.801

0.764

0.473

0.808

0.126

0.001

0.001

0.155

0.321

0.117

0.787

-0.509

-0.184

-0.467

-0.309

-0.274

-0.473

-0.127

0.352

0.186

-0.013

-0.060

-0.687

-4.219

0.430

0.855

0.603

0.419

0.586

0.370

1.015

1.295

0.689

0.002

0.181

0.078

3.206

***

***

Mean dependent var

R-squared 

F-test  

Akaike crit. (AIC)

5.342

0.463

5.745

198.900

SD dependent var 

Number of observations

Prob > F 

Bayesian crit. (BIC)

0.841

93.000

0.000

231.824

Table A.2 
Factors explaining 
monthly electricity 
consumption of 
sampled households

Source: Authors’ analysis
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Figure A.7 
Typical load profile of 
all households across 
months

The black line shows the 
typical load profile for all 
households considered 

together.

Source: Authors’ analysis

Figure A.6 
Daily and typical load 
profile of a sample 
household across 
months

The black line shows the av-
erage load profile obtained 
by averaging load for each 

hour.

Source: Authors’ analysis
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Annexure 7: Methodology for clustering households by 
their load profile
For the clustering process, we first down-sampled the data to hourly level (24 points per 
day) for all the households for each month. Figure A.6 illustrates the hourly load profile for 
a household in Mathura (MH10) for all the days during which data was recorded. Figure A.7 
shows the typical load profiles for all households for all the months under observation.

Thereafter, we then clustered the data (<home, day> pair) using k-means function of cluster 
package in R into different clusters. We did the clustering with the load profiles for the month 
of August, when all 86 households (92 per cent) were communicating and using their typical 
summer loads. To do so, we first found the optimal number of clusters using the Ward’s 
method for hierarchical clustering. Figure A.8 shows the dendogram for the sampled house-
holds, with households having closest load profile connected with the shortest branch. As 
the figure illustrates, four clusters can be clearly identified (households clubbed within red 
boxes). Accordingly, we segment our sample into four clusters using k-means cluster analy-
sis. See Figure A.9 for the cluster plot.
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Figure A.8 
Household cluster 
hierarchy dendogram 
(Ward’s method)

There are four prominent 
clusters as shown by the 

red boxes

Source: Authors’ analysis

Annexures

Figure A.9 
Cluster plot against 
first two principal 
components for 
the household load 
profile for the month 
of September

Source: Authors’ analysis



What Smart Meters Can Tell Us? Insights on Electricity Supply and Use in Mathura and Bareilly Households74

3-star non-inverter

3-star inverter

5-star inverter

AC star rating 
and type AC usage:

2160 hrs/yr
AC usage:

1800 hrs/yr
AC usage:

1440 hrs/yr
AC usage:
960 hrs/yr

AC usage:
360 hrs/yr

Cost savings (INR/year) at a tariff of INR 6.5/unit

562

1,071

3,510

468

892

2,925

374

714

2,340

250

476

1,560

94

178

585

3-star non-inverter

3-star inverter

5-star inverter

86

165

540

72

137

450

58

110

360

38

73

240

14

27

90

AC star rating 
and type AC usage:

2160 hrs/yr
AC usage:

1800 hrs/yr
AC usage:

1440 hrs/yr
AC usage:
960 hrs/yr

AC usage:
360 hrs/yr

Energy savings (units/year) Table A.4 
Energy savings upon 
switching from 2-star 
non-inverter AC to 
higher star-labelled 
ACs at varied usage 
pattern

Source: Authors’ analysis

Table A.5 
Cost savings upon 
switching from 2-star 
non-inverter AC to 
higher star-labelled 
ACs at varied usage 
pattern

Source: Authors’ analysis

2-star non-inverter

3-star non-inverter

3-star inverter

5-star inverter

1,575

1,489

1,411

1,035

1,313

1,241

1,176

863

1,050

993

941

690

700

662

627

460

253

248

235

173

AC star rating 
and type AC usage:

2160 hrs/yr
AC usage:

1800 hrs/yr
AC usage:

1440 hrs/yr
AC usage:
960 hrs/yr

AC usage:
360 hrs/yr

AC energy consumption (units/year) Table A.3 
Energy consumption 
of various star-
labelled ACs for 
varied usage pattern

Source: Authors’ analysis

Annexure 8: Calculations for estimating payback time for 
AC purchase
In order to calculate the payback time for the extra investments towards a higher star-la-
belled AC, we first calculated the electricity that ACs of different ratings would consume 
when used for various hours of usage (Table A.3). This is estimated by extrapolating the 
energy consumption values mentioned on the star-labels of respective AC models (see Table 
3). We assume that the ACs will be used under the test conditions. Using the energy consump-
tion values, we estimate the energy savings and cost savings that consumers would incur if 
they were to choose a higher star-labelled AC over a 2-star one. These estimations are shown 
in Table A.4 and A.5, respectively. We use the estimates of cost savings and additional expen-
diture for a higher rated AC to calculate the payback time, which is shown in Table 4.
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The ‘smart’ meters allow two-way 
communication between the utility and the 
consumer.

Image: Milan Jacob/CEEW
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